自控理论实验实验指导书(LABVIEW)(6)

2019-01-03 17:44

自动控制理论实验指导 ct0图4.4.5 t ct0图4.4.6t(2)传递函数法 期望的系统开环传递函数除以未加校正二阶闭环系统开环传递函数,可以得到串联校正装置的传递函数。 同样地,可从串联校正装置的传递函数设计其模拟电路,如图4.4.4所示。

- 25

自动控制理论实验指导 实验五 典型非线性环节的静态特性

一.实验目的

1.了解并掌握典型非线性环节的静态特性。 2.了解并掌握典型非线性环节的电路模拟研究方法。

二.实验内容

1.完成继电型非线性环节静特性的电路模拟研究。 2.完成饱和型非线性环节静特性的电路模拟研究。 3.完成具有死区特性的非线性环节静特性的电路模拟研究。 4.完成具有间隙特性的非线性环节静特性的电路模拟研究。

三.实验步骤

1.利用实验设备,设计并连接继电型非线性环节的模拟电路,完成该环节的静态特性

测试;并改变参数,观测参数对静态特性的影响。

参阅本实验附录1,从图5.1.1和图5.1.2可知,利用实验箱上的单元U6即可获得实验所需继电型非线性环节的模拟电路。单元电路中双向稳压管的稳压值为5.1V,改变U6中的电位器的电阻接入值,即可改变继电特性参数M,M随阻值减小而减小。

可利用周期斜坡或正弦信号测试非线性环节的静态特性,下面分两种情况说明测试方法。

无上位机时,利用实验箱上的信号源单元U2所输出的正弦信号(或周期斜坡信号)作为环节输入,即连接箱上U2的“正弦波”与环节的输入端(对应图5.1.2的Ui)。然后用示波器观测该环节的输入与输出(对应图5.1.2的Ui和Uo)。注意调节U2的正弦波信号“频率”电位器RP5与“幅值”电位器RP6,以保证观测到完整的波形。

有上位机时,必须在熟悉上位机界面操作的基础上,充分利用上位机提供的虚拟示波器与信号发生器功能。为了利用上位机提供的虚拟示波器与信号发生器功能,接线方式将不同于上述无上位机情况。此时将Ui连到实验箱 U3单元的O1(D/A通道的输出端)和I1(A/D通道的输入端),将Uo连到实验箱 U3单元的I2(A/D通道的输入端),并连好U3单元至上位机的USB2.0通信线。接线完成,经检查无误,再给实验箱上电后,启动上位机程序,进入主界面。界面上的操作步骤如下:

①按通道接线情况: 选择任一路A/D输入作为环节的输出,选择任一路D/A作为环节的输入.不同的通道,图形显示控件中波形的颜色将不同;将另一输出通道直接送倒输入通道

-

26

自动控制理论实验指导 (显示示波器信号源发出的输入波形)。 ②硬件接线完毕后,检查USB口通讯连线和实验箱电源后,运行上位机软件程序,如果有问题请求指导教师帮助。

③进入LabVIEW实验界面后,先对显示进行设置:选择显示模式(在LabVIEW图形控件的右边),可先选择“X-t模式”,或选择“X-Y模式”,或同时显示两种模式.在两种不同显示方式下都观察一下非线性的特性;选择“T/DIV量程”(在实验界面的右边框里)为1HZ/1S。在选择显示模式为“X-t模式”时。

④进行实验设置,先选择“测试信号”为正弦波,然后设置信号的幅值5(不是唯一的,可根据实验曲线调整大小),“测试信号”也可以为周期斜坡信号,显示模式可以同时用两种显示模式显示非线性静特性,也可以按照需要选择任一种显示模式,如“X-T 模式”或者是“X-Y 模式”。

对“正弦波”:选择“幅值”为“5V”,选择“偏移”为0V,选择“T/DIV”为“1HZ/1S”。 对“周期斜坡信号”:选择“幅值”为“10V”,选择“偏移”为-5V,选择“T/DIV”为“1HZ/1S”。

⑤以上设置完成后,按照上面的步骤④设置好信号后,点击“下载数据”按钮,将设置的测试信号发送到数据采集系统。按“开始”按钮启动实验,动态波形得到显示,直至周期反应过程结束,实验也自动结束,如设置合理就可以在主界面中间得到反映该非线性环节静态特性的波形。注意,采用不同测试信号看到的波形或曲线是不同的。

⑥改变环节参数,按“开始”启动实验,动态波形得到显示,直至周期反应过程结束,实验也自动结束,如设置合理就可以在主界面中间得到反映参数改变对该非线性环节静态特性影响的波形。,

⑦按实验报告需要,将图形结果保存为位图文件,操作方法参阅软件使用说明书。 2.利用实验设备,设计并连接饱和型非线性环节的模拟电路,完成该环节的静态特性测试;并改变参数,观测参数对静态特性的影响。

参阅本实验附录2,从图5.2.1和图5.2.2可知,利用实验箱上的单元U7即可获得实验所需饱和型非线性环节的模拟电路。单元电路中双向稳压管的稳压值为2.4V,改变U7中的电位器的电阻接入值,即可改变饱和特性参数K与M,K与M随阻值减小而减小。

可利用周期斜坡或正弦信号测试非线性环节的静态特性,具体操作方法请参阅本实验步骤1,这里不再赘述。

3.利用实验设备,设计并连接具有死区特性的非线性环节的模拟电路,完成该环节的静态特性测试;并改变参数,观测参数对静态特性的影响。

参阅本实验附录3,从图5.3.1和图5.3.2可知,利用实验箱上的单元U5,将该单元中的拨键S4拨向上方即可获得实验所需具有死区特性的非线性环节的模拟电路。改变U5中的电阻Rf的阻值,即可改变死区特性线性部分斜率K,K随Rf增大而增大。改变U5中的

- 27

自动控制理论实验指导 电阻R1(=R2)的阻值,即可改变死区特性死区的宽度Δ,Δ随R1增大而增大。 可利用周期斜坡或正弦信号测试非线性环节的静态特性,具体操作方法请参阅本实验步骤1,这里不再赘述。

4.利用实验设备,设计并连接具有间隙特性的非线性环节的模拟电路,完成该环节的静态特性测试;并改变参数,观测参数对静态特性的影响。

参阅本实验附录4,从图5.4.1和图5.4.2可知,利用实验箱上的单元U5,将该单元中的拨键S4拨向下方即可获得实验所需具有间隙特性的非线性环节的模拟电路。改变U5中的电容Cf的阻值,即可改变间隙特性线性部分斜率K,K随Cf增大而减小。改变U5中的电阻R1(=R2)的阻值,即可改变死区特性死区的宽度Δ,Δ随R1增大而增大。

可利用周期斜坡或正弦信号测试非线性环节的静态特性,具体操作方法请参阅本实验步骤1,这里不再赘述。

请注意,单元U5不含运放锁零电路,为避免电容上电荷累积影响实验结果,在每次实验启动前,务必对电容进行短接放电。 5.分析实验结果,完成实验报告。 四.附录 1.具有继电特性的非线性环节 具有继电特性非线性环节的静态特性,即理想继电特性如图5.1.1所示。该环节的模拟电路如图5.1.2所示。 继电特性参数M,由双向稳压管的稳压值与后一级运放放大倍数之积决定。故改变图5.1.2中电位器接入电阻的数值即可改变M。当阻值减小时,M也随之减小。 实验时,可以用周期斜坡或正弦信号作为测试信号进行静态特性观测。注意信号频率的选择应足够低,如1Hz。通常选用周期斜坡信号作为测试信号时,选择在X-Y显示模式下观测;选用正弦信号作为测试信号时,选择在X-t显示模式下观测。 uoM0uiM图5.1.110kui10k-+++10k-+uo图5.1.2- 28 自动控制理论实验指导 2.具有饱和特性的非线性环节 具有饱和特性非线性环节的静态特性,即理想饱和特性如图5.2.1所示: 该环节的模拟电路如图5.2.2所示: 特性饱和部分的饱和值M等于稳压管的稳压值与后一级放大倍数的积,特性线性部分的斜率K等于两级运放放大倍数之积。故改变图5.2.2中的电位器接入电阻值时将同时改变M和K,它们随阻值增大而增大。 实验时,可以用周期斜坡或正弦信号作为测试信号进行静态特性观测。注意信号频率的选择应足够低,如1Hz。选用周期斜坡信号作为测试信号时,可在X-Y显示模式下观测;选用正弦信号作为测试信号时,可在X-t显示模式下观测。 uoM0uiM10k图5.2.110k10k-++ui10k-++uo图5.2.23.具有死区特性的非线性环节 具有死区特性非线性环节的静态特性,即理想死区特性如图5.3.1所示: 该环节的模拟电路如图5.3.2所示: 斜率K为: k?Rf/R0 uo死区??R2?15(v)?0.5R2(v),式中R2的单位30k0为k?,且R2=R1(实际死区还要考虑二极管的压降值)。 实验时,可以用周期斜坡或正弦信号作为测试信kui号进行静态特性观测。注意信号频率的选择应足够低,如1Hz。选用周期斜坡信号作为测试信号时,可在X-Y显示模式下观测;选用正弦信号作为测试信号时,可在X-t显示模式下观测。 29 图5.3.1-


自控理论实验实验指导书(LABVIEW)(6).doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:概率论与数理统计(第三版)课后答案习题1

相关阅读
本类排行
× 注册会员免费下载(下载后可以自由复制和排版)

马上注册会员

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: