阻变随机存储器(RRAM)综述

2019-01-05 13:05

目 录

引言????????????????????????????????1 1 RRAM技术回顾???????????????????????????1 2 RRAM工作机制及原理探究??????????????????????4

2.1 RRAM基本结构????????????????????????4 2.2 RRAM器件参数????????????????????????6 2.3 RRAM的阻变行为分类?????????????????????7 2.4 阻变机制分类????????????????????????9 2.4.1电化学金属化记忆效应????????????????11 2.4.2价态变化记忆效应??????????????????15

2.4.3热化学记忆效应???????????????????19 2.4.4静电/电子记忆效应??????????????????23 2.4.5相变存储记忆效应??????????????????24 2.4.6磁阻记忆效应????????????????????26 2.4.7铁电隧穿效应????????????????????28 2.5 RRAM与忆阻器???????????????????????30 3 RRAM研究现状与前景展望?????????????????????33 参考文献?????????????????????????????36

阻变随机存储器(RRAM)

引言:

阻变随机存储器(RRAM)是一种基于阻值变化来记录存储数据信息的非易失性存储器(NVM)器件。近年来, NVM器件由于其高密度、高速度和低功耗的特点,在存储器的发展当中占据着越来越重要的地位。硅基flash存储器作为传统的NVM器件,已被广泛投入到可移动存储器的应用当中。但是,工作寿命、读写速度的不足,写操作中的高电压及尺寸无法继续缩小等瓶颈已经从多方面限制了flash存储器的进一步发展。作为替代,多种新兴器件作为下一代NVM器件得到了业界广泛的关注[1、2],这其中包括铁电随机存储器(FeRAM)[3]、磁性随机存储器(MRAM) [4]、相变随机存储器(PRAM)[5]等。然而,FeRAM及MRAM在尺寸进一步缩小方面都存在着困难。在这样的情况下, RRAM器件因其具有相当可观的微缩化前景,在近些年已引起了广泛的研发热潮。本文将着眼于RRAM的发展历史、工作原理、研究现状及应用前景入手,对RRAM进行广泛而概括性地介绍。

1 RRAM技术回顾

虽然RRAM于近几年成为存储器技术研究的热点,但事实上对阻变现象的研究工作在很久之前便已开展起来。1962年,T. W. Hickmott通过研究Al/SiO/Au、Al/Al2O3/Au、Ta/Ta2O5/Au、Zr/ZrO2/Au以及Ti/TiO2/Au等结构的电流电压特性曲线,首次展示了这种基于金属-介质层-金属(MIM)三明治结构在偏压变化时发生的阻变现象[6]。如图1所示,Hickmott着重研究了基于Al2O3介质层的阻变现象,通

1

过将阻变现象与空间电荷限制电流理论、介质层击穿理论、氧空洞迁移理论等进行结合,尝试解释了金属氧化物介质层阻变现象的机理。虽然在这篇文献报道中,最大的开关电流比只有30:1,但本次报道开创了对阻变机理研究的先河,为之后的RRAM技术研发奠定了基础。

图1. T. W. Hickmott报道的基于Al/Al2O3/Au结构的电流-电压曲线,其中氧化层的厚度为

300?,阻变发生在5V左右,开关电流比约10:1[6]

Hickmott对阻变现象的首次报道立刻引发了广泛的兴趣,之后在十九世纪60年代到80年代涌现了大量的研究工作,对阻变的机理展开了广泛的研究。除了最广泛报道的金属氧化物,基于金属硫化物[7]、无定形硅[8]、导电聚合物[9]、异质结构[10]等新材料作为介质层的结构也表现出了阻变性质。这些研究工作也很快被总结归纳[11、12]。早期的研究工作主要是对于阻变的本质和机理进行探究,

2

以及对阻变机理应用于RRAM技术的展望。但此时半导体产业对新型NVM器件的研究尚未引起广泛重视,并且在对阻变现象的解释过程中遇到了很多困难,没有办法达成广泛的共识,故而在80年代末期,对阻变的研究一度趋于平淡。90年代末期,摩尔定律的发展规律开始受到物理瓶颈的限制,传统硅器件的微缩化日益趋近于极限,新结构与新材料成为研究者日益关注的热点。与此同时,研究者开始发现阻变器件极为优异的微缩化潜力及其作为NVM器件具有可观的应用前景[13],因而引发了对基于阻变原理的RRAM器件的广泛研究。

如图2所示,近十年来,由于RRAM技术的巨大潜力,业界对非易失性RRAM的研究工作呈逐年递增趋势[14]。日益趋于深入而繁多的研究报告,一方面体现着RRAM日益引起人们的重视,而另一方面,则体现着其机理至今仍存在的不确定性,仍需要大量的研究讨论。尽管自从对阻变现象的初次报道以来,阻变器件结构一直沿用着简单的金属-介质层-金属(MIM)结构,且对于所有材料的介质层,其电流-电压特性所表现的阻变现象几乎一致,但是对于不同的介质层材料,其阻变现象的解释却各有分歧。总体而言,基于导电细丝和基于界面态的两种阻

图2. 由Web of Science统计的每年关于阻变(resistive switching)词条发表的文章数[14]。

3

变解释理论已被大多数研究者接受,尤以导电细丝理论最被广泛接纳。由于基于细丝导电的器件将不依赖于器件的面积,于是材料的多样性配以细丝导电理论,愈加拓宽了RRAM技术的应用前景。截至今日,研究较为成熟的RRAM介质层材料主要包括:二元过渡金属氧化物(TMO),如NiO[15,16]、TiO2[17]、ZnO[18];固态电解质,如Ag2S[19]、GeSe[20];钙钛矿结构化合物[21,22];氮化物[23];非晶硅[24];以及有机介质材料[25]。RRAM的研究应用还有广阔的空间值得人们去研究探寻,还有许多困难与挑战亟待人们去积极面对。近几年,国内外研究者陆续开始对RRAM研究的现状进行综述总结[26-29],为进一步的探究工作打下了基础。由于RRAM研究仍处于共识与争论并存、理论尚未统一的研究阶段,本文旨在总结目前部分较为成熟的工作以及较为公认的理论,并且对RRAM的应用前景作出合理的评价。

2 RRAM工作机制及原理探究

2.1 RRAM基本结构

存储器的排布一般是以矩形阵列形式的,矩阵的行和列分别称为字线和位线,而由外围连线控制着字线和位线,从而可以对每个单元进行读和写操作。对于RRAM而言,其存储器矩阵可以设计为无源矩阵和有源矩阵两种。无源矩阵单元相对而言设计比较简单,如图3(a)所示,字线与位线在矩阵的每一个节点通过一个阻变元件以及一个非线性元件相连。非线性元件的作用是使阻变元件得到合适的分压,从而避免阻变元件处于低阻态时,存储单元读写信息的丢失。非线性元件一般选择二极管或者其他有确定非线性度的元件。然而,采用无源矩阵会使相邻单元间不可避免地存在干扰。为了避免不同单元之间信号串扰的影响,

4


阻变随机存储器(RRAM)综述.doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:2018-2024年中国土砂石开采行业分析与投资前景分析报告(目录)

相关阅读
本类排行
× 注册会员免费下载(下载后可以自由复制和排版)

马上注册会员

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: