a?2aa?2a?x1?x2?f?x1??f?x2?∴f???ln?a?2??ln??2, ?222222??设h?a??lna?2a2114?a??2?a?4?,则h??a?????0, 22a?2222?a?2?所以h?a?在?4,???上为减函数,又h?4??0,所以h?a??0, 所以f??x1?x2?f?x1??f?x2?. ??2?2?2222.(1)解:直线l和圆C2的普通方程分别为x?y?b?0,?x?2??y?4,
?AOB?900,∴直线l过圆C2的圆心C2??2,0?,所以?2?b?0,b?2;
?2x??2?t??2(为参数)
(2)证明:曲线C1:x2?ay?a?0?,可知直线l的参数方程为?t?y?2t??2代入曲线C1得
1212?2?t??22?at?4?0,??a?4a?0恒成立, ??222???设M、N两点对应的参数分别为t1、t2,则t1t2?4?8, 12所以C2MC2N?t1t2?8为定值.
23.解:(1)x?1?x?1?0?x?1?x?1,
22①?x??1x??1?,②??1?x?2??, ?22x?1?x?1?x?1?x?1???所以,不等式的解集为?x|?1?x?2?;
(2)g?x??x?x?m?1??x?x?m?1??x?x?m?1?m?1, 当且仅当??x??x?m?1??0时取等号,∴1?m?1?0, 得m??2,
∴g?x??x?x?1,故当x???1,2?时,
??2x?1?1?x?0?g?x???10?x?1,
?2x?11?x?2?所以g?x?在x???1,2?时的值域为?1,3?.