第五章 线性微分方程组
§5.1 存在唯一性定理
习题5.1
1.给定方程组
x????x1??01???x?, . (*) x????x2???10?t??cos?sint???,a)试验证u(t)??v(t)???sint??cost??分别是方程组(*)的满足初始条件
?????1??0????,的解; u(0)???v(0)?????0??1??c1?b)试验证w(t)?c1u(t)?c2v(t)是方程组(*)的满足初始条件w(t)???c??的解,其
?2?中c1,c2是任意常数.
证明 a)u(0)?????,v(0)?????显然.
?1??0??0??1???sint??01??cost??01?u?(t)????cost??????10?????sint??????10??u(t),
?????????cost??01??sint??01?v?(t)????sint??????10????cost??????10??v(t),
????????所以u(t)????cost??sint??1?????,分别是方程组(*)的满足初始条件v(t)?u(0)???cost??0??,?sint???????0?v(0)???1??的解.
???1??0??c1?b)w(0)?c1u(0)?c2v(0)?c1???c?0?2??1?????c??,又
?????2??01??01????w(t)?c1u(t)?c2v(t)?c1???10??u(t)?c2???10??v(t)
?????01??01?????(cu(t)?cv(t))?2??10?1??10??w(t),
????所以w(t)?c1u(t)?c2v(t)是方程组(*)的满足初始条件w(t)??其中c1,c2?c??的解,?2?是任意常数.
2.将下面的初值问题化为与之等价的一阶方程组的初值问题:
?c1?a)x???2x??7tx?e?t,x(1)?7,x?(1)??2;
b)x(4)?x?tet,x(0)?1,x?(0)??1,x??(0)?2,x???(0)?0;
?x???5y??7x?6y?et,,x(0)?1,x?(0)?0,y(0)?0,y?(0)?1. c)??y???2y?13y??15x?cost (提示:令w1?x,w2?x?,w3?y,w4?y?)
??x??x2,x2??x????2x2?7tx1?e?t,即与该初解 a)设x1?x,x2?x?,则x1值问题等价的一阶方程组的初值问题为
??x2,?x1????7tx1?2x2?e?t, ?x2?x(1)?7,x(1)??2.2?1b)设x1?x,x2?x?,x3?x??,x4?x???,
??x??x2,x2??x????x4,x4??x???x3,x3???x1?te,则得等价的一阶方则x1程组的初值问题为
t??x2,?x1?x1(0)??1??????x??x,
?x2(0)???1??23
x(0)?,???x(0)???2?. x?x,4?3?3????x(0)??0??x???x?tet
?4???1?4
c)令w1?x,w2?x?,w3?y,w4?y?,有
??w2,?w1?w1(0)??1??????t??7w1?6w3?5w4?e,?w2(0)??0??w2w(0)????, ,???w(0)0??w4,?w3?3????w(0)??1??w??15w?2w?13w?cost?4???134?4为与原初值问题等价的一阶方程组的初值问题.
3.试用逐步逼近法求方程组
?x1??01??x??, x???x?x?? ??10??2???满足初始条件x(0)?????的第三次近似解.
?0??1?解
?0(t)?????,
?0?t?01??0??t?????????1(t)??????ds???????, 01?1011?????????0??1??2(t)??????????0??1??t??01??s?????ds??1?1t2??, 0?10??1??????2?t3?t?1?t?0?t?01??s?6???????ds??12?第三次近似解为 ?3(t)????????12??. 01?s1?101?t?????2??2?
§5.2 线性微分方程组的一般理论
习题5.2
1.试验证
?t2t??(t)???
?2t1?是方程组
1??0x???22?x,x??2?t??t?在任何不包含原点的区间a?t?b上的基解矩阵.
?t2??t??,?2(t)???,则由于 证明 设?1(t)???1??2t??????x1??x? ?2?0?2t????(t)???1?2?????2???t20?1????(t)???2?0?????2???t21??t2??01???2???22??1(t), ??????t??2t??t2t?1??t??01?2?????22??2(t), ???1???t????t2t?所以?1(t),?2(t)都是方程组的解,因而?(t)???1(t)2?2(t)?是所给方程组的解矩阵.又
由于在任何不包含原点的区间[a,b]上,det?(t)??t?0(t?[a,b]),故?(t)是所给方程组的基解矩阵.
2.考虑方程组
x??A(t)x, (5.15)
其中A(t)是区间a?t?b上的连续n?n矩阵,它的元素为aij(t),i,j?1,2,?,n.
a)如果x1(t),x2(t),?,xn(t)是(5.15)的任意n个解,那么它们的Wronsky行列式
W[x1(t),x2(t),?,xn(t)]满足下面的一阶线性微分方程
W??[a11(t)?a22(t)???ann(t)]W.
(提示:利用行列式的微分公式,求出W?的表达式);
b)解上面的一阶线性微分方程,证明下面的公式:
W(t)?W(t0)e证明 a)
?t0[a11(s)?a22(s)???ann(s)]dst,t0,t?[a,b].
?(t)x11W?(t)?x21(t)?xn1(t)?(t)?x1?n(t)x12x11(t)x12(t)?x1n(t)x22(t)?x2n(t)x21(t)x22(t)?x2n(t)???
????????1(t)xn?2(t)?xnn?(t)xn2(t)?xnn(t)xn?ak?1n1k(t)xk1(t)??ak?1n1k(t)xk2(t)??????ak?1n1k(t)xkn(t)??
??x21(t)xn1(t)x22(t)xn2(t)x2n(t)xnn(t)???x11(t)?x21(t)?nkx12(t)x22(t)?nkx1n(t)x2n(t)?nk
?ak?1n(t)xk1(t)?ak?1n(t)xk2(t)?x11(t)?ak?1n(t)xkn(t)x11(t)?a11(t)x21(t)?xn1(t)x12(t)?x1n(t)x12(t)?x1n(t)x22(t)?x2n(t)
???xn2(t)?xnn(t)x22(t)?x2n(t)x(t)???ann(t)21????xn2(t)?xnn(t)xn1(t)?[a11(t)???ann(t)]W(t),
所以W(t)是一阶线性微分方程W??[a11(t)?a22(t)???ann(t)]W的解.
b)由a)知,W??[a11(t)?a22(t)???ann(t)]W,分离变量后两边积分求解得
W(t)?ce?t0[a11(s)?a22(s)???ann(s)]dstt,
,t0,t?[a,b].
t?t0时就得到c?W(t0),所以W(t)?W(t0)e?t0[a11(s)?a22(s)???ann(s)]ds3.设A(t)为区间[a,b]上的连续n?n实矩阵,?(t)为方程x??A(t)x的基解矩阵,而x??(t)为其一解.试证:
a)对于方程y???AT(t)y的任一解?(t)必有?T(t)?(t)?常数;
b)?(t)为方程y???AT(t)y的基解矩阵的充要条件是存在非奇异的常数矩阵C,使
?T(t)?(t)?C.
证明 a)由于?(t)是方程x??A(t)x的解,故有??(t)?A(t)?(t),?(t)为方程
y???AT(t)y的解,故??(t)??AT(t)?(t).所以
??T??(t)?(t)??T(t)?(t)??T(t)??(t)?[??(t)]T?(t)??T(t)??(t)
??? ?[?AT(t)?(t)]T?(t)??T(t)A(t)?(t) ???T(t)A(t)?(t)??T(t)A(t)?(t)?0, 所以?(t)?(t)?常数.
Tb)“?” ?(t)是方程x??A(t)x的基解矩阵,因此??(t)?A(t)?(t),?(t)是方
TTet?(t)?0和det?(t)?0.程y???A(t)y的基解矩阵,故??(t)??A(t)?(t),且d所
以
??T??(t)?(t)??T(t)?(t)??T(t)??(t)?[??(t)]T?(t)??T(t)??(t)
??? ?[?A(t)?(t)]?(t)??(t)A(t)?(t) ???(t)A(t)?(t)??(t)A(t)?(t)?0, 故?(t)?(t)是常数矩阵,设?(t)?(t)?C,则
TTTTTTTdetC?det[?T(t)?(t)]?det?T(t)?det?(t)?det?(t)?det?(t)?0,
因此存在非奇异常数矩阵C,使?(t)?(t)?C.
“?”若存在非奇异常数矩阵C,使?(t)?(t)?C,则有
TT