0?detC?det[?T(t)?(t)]?det?T(t)?det?(t)?det?(t)?det?(t),
所以det?(t)?0,即?(t)是非奇异矩阵或说?(t)的各列是线性无关的.又
?0??T(t)?(t)?[?t(t)]??(t)??T(t)??(t)?[??(t)]T?(t)??T(t)A(t)?(t),
??并注意到det?(t)?0,有[??(t)]T???T(t)A(t),即??(t)??AT(t)?(t).
从而?(t)是方程y???AT(t)y的基解矩阵.
4.设?(t)为方程x??Ax(A为n?n常数矩阵)的标准基解矩阵(即?(0)?E),证明?(t)??1(t0)??(t?t0),其中t0为某一值.
证明 由于A为n?n常数矩阵,故A在(??,??)有定义、连续,从而它的解也在
(??,??)连续可导.
由?(t)为方程x??Ax的基解矩阵,故?t?(??,??),有det?(t)?0,并且有
??(t)?A?(t),从而对某个t0,有det?(t?t0)?0,且
[?(t?t0)]????(t?t0)?(t?t0)????(t?t0)?A?(t?t0),
即?(t?t0)亦为方程x??Ax的基解矩阵.由推论2*,存在一个非奇异常数矩阵G,使得在区间(??,??)上,?(t?t0)??(t)G.又因为E??(0)??(t0?t0)??(t0)G,所以G???1(t0).
因此?(t)??1(t0)??(t?t0),其中t0为某一值.
5.设A(t),f(t)分别为在区间[a,b]上连续的n?n矩阵和n维列向量.证明方程组
x??A(t)x?f(t)存在且最多存在n?1个线性无关解.
~(t)是证明 设方程组x??A(t)x的基解矩阵为?(t)?[?1(t),?2(t),?,?n(t)],而?~(t),其中c是任意的常数方程组x??A(t)x?f(t)的一个特解,则其通解为x??(t)c??~(t)必与?(t),?(t),?,?(t)线性无关,从而?~(t),列向量.若f(t)不恒为0,则?12n~(t),?(t)??~(t),?,?(t)??~(t)线性无关,即方程组x??A(t)x?f(t)存在?1(t)??22n?1个线性无关解.
又假若x(t)是方程组x??A(t)x?f(t)的任意一个解,则一定有确定的常数列向量c,
~(t),将其加入?~(t),?(t)??~(t),?(t)??~(t),?,?(t)??~(t)使得x(t)??(t)c??122这一组向量就线性相关,故方程组x??A(t)x?f(t)的任何n?2个解必线性相关.从而方程组x??A(t)x?f(t)存在且最多存在n?1个线性无关解.
6.试证非齐线性微分方程组的叠加原理:设x1(t),x2(t)分别是方程组
x??A(t)x?f1(t),x??A(t)x?f2(t)
的解,则x1(t)?x2(t)是方程组x??A(t)x?f1(t)?f2(t)的解.
证明 因为x1(t),x2(t)分别是方程组
x??A(t)x?f1(t),x??A(t)x?f2(t)
?(t)?A(t)x1(t)?f1(t),x2?(t)?A(t)x2(t)?f2(t),所以有 的解,故x1?(t)?x2?(t)?[A(t)x1(t)?f1(t)]?[A(t)x2(t)?f2(t)] [x1(t)?x2(t)]??x1 ?A(t)[x1(t)?x2(t)]?f1(t)?f2(t),
所以x1(t)?x2(t)是方程组x??A(t)x?f1(t)?f2(t)的解.
7.考虑方程组x??Ax?f(t),其中
?x1??21??sint???x???,,A??f(t)??x??02??cost??. ?2??????e2ta)试验证?(t)???0?te2t??是x??Ax的基解矩阵; 2t?e??1?b)试求x??Ax?f(t)的满足初始条件?(0)????1??的解?(t).
??e2t证明 a)de?t(t)?0?2e2t??(t)???0?te2t4t?e?0,?t?(??,??)成立.而 2te(2t?1)e2t??21??e2t???????2t??2e??02??0te2t???A?(t), 2t?e?所以?(t)是x??Ax的基解矩阵.
1b)?(s)?4se?1?e2s??0??s??se2s??2s?1?,这样,由定理8,方程组满足初始???e??2s?e??01??0?条件?(0)???0??的解就是
???e2t?(t)??(t)??(s)f(s)ds???00?t?1te2t?t?2s?1?s??sins??e????ds ????2t??0e??01??coss??e2t ???0?2tte2t?t?2s?sins?scoss??e??ds ??2t??0cosse???2t2??1?2t?e(?10tcost?5tsint?14sint?2cost)???ete??2525??? ???0e2t??12????e?2t(sitn?2cots)??55???2?2t2tt?cots)??(5te?e?7sin?, ??251?(2e2t?sint?2cots)???5??对应的齐线性方程组满足初始条件?h(0)????1??的解就是 ???1??e2t?h(t)??(t)?(0)?h(0)???0??1te2t??1?1??e2t(1?t)??E??, ?????2t?2t??e???1???e??1??的解为 ???1?所以,所求方程组x??Ax?f(t)的满足初始条件?(0)???2?12t??e(27?15t)?(7sint?cost)?25?. ?(t)??h(t)??(t)??2531???e2t?(sint?2cost)??55??8.试求x??Ax?f(t),其中
?x1??21??sint???x???,,A??f(t)??x??02??cost?? ?2?????满足初始条件?(0)????1??的解?(t). ???1??e2t(1?t)??解 由上题知?h(t)????e2t?,且这里
???e2t?(t)??(t)??(s)f(s)ds???00?t?1te2t?t?2s?1?s??0??e????ds 2s????2t??0e??01??e?12??122t?te2t???t??te???, 2???22t???2te?t?????te??e2t ???0??e2tte2t?t??s????ds???2t??0??0e??1??所以,所求方程组x??Ax?f(t)的满足初始条件?(0)????1???的解为 ?1??122t???(1?t?t)e??(t)??h(t)??(t)??. 2??(t?1)e2t???9.试求下列方程的通解:
a)x???x?sect,?b)x????8x?e2t;
?2?t??2;
c)x???6x??9x?et.
解 a)易知对应的齐线性方程x???x?0的基本解组为x1(t)?cost,x2(t)?sint,
costsint用公式(5.31)来求方程的一个解.这时W[x1(t),x2(t)]??1,取t0?0,
?sintcost有
?(t)??tt0tx2(t)x1(s)?x1(t)x2(s)f(s)ds??(sintcoss?costsins)secsds
0W[x1(s),x2(s)] ?sintds?costtansds?tsint?costlncost
00?t?t所以方程的通解为 x?c1cost?c2sint?tsint?costlncost.
b)由于特征方程?3?8?0的根是?1?2,?2,3??1?3i,故对应的齐线性方程的
基本解组为x1(t)?e,x2(t)?e?tcos3t,x3(t)?e?tsin3t.
2t原方程的一个特解由公式(5.29)有(取t0?0),
?(t)??xk(t)?k?13Wk[x1(s),x2(s),x3(s)]f(s)ds,
t0W[x(s),x(s),x(s)]123t其中
W(t)?W[x1(t),x2(t),x3(t)]
e2t ?2e2te?tcos3te?tsin3t4e2t?e?t(cos3t?3sin3t)e?t(3cos3t?sin3t)
?2e?t(cos3t?3sin3t)?2e?t(3cos3t?sin3t)?123,
W1(t)?W[x1(t),x2(t),x3(t)]
0 ?0e?tcos3te?tsin3t?e?t(cos3t?3sin3t)e?t(3cos3t?sin3t) 1?2e?t(cos3t?3sin3t)?2e?t(3cos3t?sin3t) ?3e?2t,
W2(t)?W[x1(t),x2(t),x3(t)]
e2t ?2e2t0e?tsin3t4e2t0e?t(3cos3t?sin3t)?et(3sin3t?3cos3t), 1?2e?t(3cos3t?sin3t)W3(t)?W[x1(t),x2(t),x3(t)]
e2t ?2e2te?tcos3t04e2t所以
?e?t(cos3t?3sin3t)0??et(3cos3t?3sin3t). ?2e?t(cos3t?3sin3t)1?(t)?e2t?120?tt33e?2s?eds?ecos3t?2s?ttes(3sin3s?3cos3s)123e2sds
0e2sds
?esin3t?t?es(3cos3s?3sin3s)1230 ?12t12t1te?e?e?t(sin3t?3cos3t), 12242432t故通解x(t)?c1e?e?t(c2cos3t?c3sin3t)?12tte. 12