∴
ab??12.??????????????(2分) (2)解???y?x2?ax??x?2ax得:x2?ax??x2?2ax2x2?3ax?0, ?y?2 ,x??31?0,x22a,
当x??333?2a时,y?4a2, ∴C????32a,4a2??. ???????????(3分) 过C作CD?x轴于点D,∴D????32a,0???. ∵?OCA?90?,∴?OCD∽?CAD,∴
CDAD?ODCD, ∴CD2?AD?OD,即??3?21?3??4a2????2a????2a??,
∴a21?0(舍去),a2?33(舍去),a23??33???????????(5分) ∴OA??2a?433,CD?34a2?1, ∴S12?OAC?2OA?CD?33??????????????(6分) (3)①C432:y??x2?3x,对称轴l232:x?3, 点A关于l2的对称点为O(0,0),C(3,1),
则P为直线OC与l2的交点,
设OA的解析式为y?kx,∴1?3k,得k?33,
则OA的解析式为y?33x, 图6.2
当x?2323时,y?233,∴P(3,23). ??????????????(8分)
②设E(m,?m2?433),(0?m?233),
则S1?OBE?2?233?(?m2?433243)??3m?3m,
11
而B(233,0),C(3,1), 设直线BC的解析式为y?kx?b,
?1?由?3k?b?,解得k?3??0?23,b??2, 3k?b图6.3 ?直线BC的解析式为y?3x?2. ??????????????(9分)
过点E作x轴的平行线交直线BC于点N, 则?m2?433m?3x?2, 即x??324233m?3m?3, ∴EN??3242333m?3m?21233?m??3m?3m?3, ∴S1?EBC?2?1?(?33m2?12332133m?3)??6m?6m?3 ∴S32432四边形OBCE?S?OBE?S?EBC?(?3m?3m)?(?6m?136m?3) ??32m2?333321732m?3??2(m?2)?24,??????????????(11分)0?m?233,∴当m?31732时,S最大?24, 当m?33242时,y??(2)?3353?2?4,
∴E(32,51734),S最大?24. ??????????????(13分) 12
?