奥数教材
第七讲 数图形
晚饭过后,妈妈给小明出了一道“试眼力”的题目:数数窗户上一共有几个正方形。小明看,立刻回答:“窗户上有6个正方形。”妈妈笑了,爷爷在一旁也笑了,小明给弄了个“丈二和尚摸不着头脑”。小朋友,你知道小明的爷爷妈妈为什么笑吗?小明数昨难道不对吗?如果不对,那么窗户上窨有几个正方形呢?下面我们就一起来研究数图形的问题。
例题与方法
例1. 下图中有多少条线段?
例2. 下面图形中有几个角?
O D C B A
A
A
B
C
D
E
例3. 下图中共有多少个三角形?
例4. 右图中有多少个正方形? B
C
A B D
E
21
奥数教材
例5. 数一数图中共有多少个三角形? A
A
D
B
C B C
A
D
D
C
B B
练习与思考
1.下图中各有多少条线段? (1) A B
C
D
E
F
F
G (2) A B
C
D
E
F
H
A
I
(3) F
E
B
D
C
2.下图中有多少个角?
A B
C D E 22
奥数教材
3.下图中各有多少个三角形?
(1) (2) (3) 4.下图中各有多少个长方形?
(1) (2)
(3)
5.下图中有多少个正方形?
第8讲 4)
分类枚举
23
( 奥数教材
小芳为了给灾区儿童捐款,把储蓄罐里的钱全拿了出来。她想数数有多少钱。小朋友,你知道小芳是怎么数的吗?小芳是个聪明的孩子,她把钱按1分、2分、5分、1角、2角、5角、1元等分类去数。所以很快就好了。
小芳数钱,用的就是分类枚举的方法。这是一种很重要的思考方法,在很多问题的思考过程中都发挥了很大的作用。下面就让我们一起来看看它的本领吧! 例题与方法
例1.右图中有多少个三角形?
例2.右图中有多少个正方形?
例3.在算盘上,用两粒珠子可以表示几个不同的三位数?分别是哪几个数? 例4.用数字1,2,3可以组成多少个不同的三位数?分别是哪几个数?
例5.往返于南京和上海之间的泸宁高速列车沿途要停靠常州、无锡、苏州三站。问:铁路部门要为这趟车准备多少种车票?
例6.小明有面值为3角、5角的邮票各两枚。他用灾些邮票能付多少种不同的邮资(寄信时,所需邮票的钱数)?
例7.有一种用6位数表示日期的方法。例如,用940812表示1994年8月12日。用这种方法表示1991年全年的日期,那么全年中6位数字都不相同的日期共有多少天? 练习与思考
1.下图中有多少个三角形?
24
奥数教材 (1) (2) 2.右图中有多少个长方形?
3.用0,1,2,3可组成多少个不同的三位数?
4.从北京到南京的特快列车,中途要停靠9个站。在几种不同标价的车票? 5.用3张10元和2张50元一共可以组成多少咱币值(组成的钱数)?
6.中、日、韩进行四国足球赛。每两队踢一场。按积分排名次,一共踢多少场? 7.丽丽有红、蓝、黑帽子各一顶,红蓝、黑围巾各一条。冬天,丽丽每天戴一顶帽子、围一条围巾,有几种不同的搭配方式?
8.用例7的方法表示1994年的日期,6位数字各不相同的共有多少天?
能力测试(一)
一、填空题。(每空5分,共60分) 1.1+2-3+4+5-6+7-8+9+10+11-12=( ) 2.15+16+17+18+19+20+21+22=( ) 3.按规律填出□中的数。
(1)3,15,35,63,99,□,195 (2)1,4,9,□,64,169,441 (3)1,3,6,10,□,21,28,36 (4)2,1,4,3,6,9,8,27,10,□
25