?y?k1(x?2)4k114?2由?x2,得(2?4)y?2y?0,∴yM? 22k1k11?4k1??y?1?422?8k124k12?8k24k2∴M(,同理,)N(,) 221?4k121?4k121?4k21?4k2由直线MN与y轴垂直,则
4k14k2 ?221?4k11?4k22∴4k1k2?4k2k12?k1?k2?0?(k2?k1)(4k1k2?1)?0
∵k1?k2,∴4k1?k2?1,即k1?k2?
21.(本小题满分13分) 记曲线fn(x)?1 4n(n?N?)图像上任一点处的切线与两坐标轴围成的三角形面积为an。 x(Ⅰ)求数列{an}的通项公式; (Ⅱ)若数列{1}的前n项和为Tn, an求证:
TTT2T3TT1????n?Tn2?1?2???n?1?(其中n?N?且n?2)。 23n23n2nn,设切点(x,), 02xx0解析:(Ⅰ)fn?(x)??∴切线方程为:y?nn??2(x?x0) x0x0令x?0,得y?2n,令y?0,得x?2x0, x0∴S?12n?||?|2x0|?2n,即an?2n 2x02TT1T21????n?1? 23n2T1212)?Tn2?Tn2?1?n?1?2(n?N?,n?2) ∵Tn?(Tn?1?2nn4n(Ⅱ)证明:(1)先证Tn?∴Tn?Tn?1?
22Tn?1T11?2?n?1?(n?N?,n?2) n4nn4n(n?1)
∴Tn?T1?∴Tn?222TT1T21111????n?1?(????) 23n41?22?3n(n?1)TTT1T2111TT11????n?1?(1?)??1?2???n?1?? 23n4n423n24nTTT12∴Tn?1?2???n?1?
23n2TTT2(2)再证2?3???n?Tn
23n1因为n?2,由Tn?Tn?1?,得到
2nTnTn?1T1122??∵Tn?Tn?1?n?1?,且
n4n2nn2n2TT11112222?T?T???T?T?∴n?n?1?, nn?1nn?1nn2n24n22n24n2TTT111122∴2?3???n?Tn?T1?(2?2???2) 23n423n1111?Tn2?(?1?2?2???2)
423n1111由(1)证明可知2?2???2?1??1,
23nnTTT122?∴当n?N且n?2时,2?3???n?Tn?(?1?1)?Tn
23n4综合(1)(2)得,当n?N且n?2时, 有
?TTT2T3TT1????n?Tn2?1?2???n?1? 23n23n2