?m?2?2??n?2??8 ???????????11'
24?m??m?0??5或?解之得:? n?012??n??5?即P?0,0?或P?,?412?? ????????????????14'
?55?(先利用定义求出P横坐标代入圆方程求纵坐标也可)
17.证明:(1)连接AB1与A则M为A1B相交于M,1B的中点。连结MD,又D为AC的中点,
?B1C//MD,又B1C?平面A1BD,MD?平面A1BD
?B1C//平面A1BD . ????????????????4′ (2)?AB?B1B,∴平行四边形ABB1A1为菱形,?A1B?AB1, 又?AC1?面A1BD
?AC1?A1B,?A1B?面AB1C1 ??????????7′ ?A1B?B1C1.又在直棱柱ABC?A1B1C1中,BB1?B1C1,
?B1C1?平面ABB1A. ??????????????9′
(3)当点E为C1C的中点时,∠BA1E=45°,且平面A1BD?平面BDE。
设AB=a,CE=x,∴AB=2a,C1E?a?x, 1?AC11∴A1E?2a2?(a?x)2?x2?3a2?2ax,BE?a2?x2 22∴在?A1BE中,由余弦定理得BE2?A1B?A1E?2A1B?A1E?cos45?
即 a?x?2a?x?3a?2ax?23a?x?2ax?2a?∴3a2?x2?2ax?2a?x,
22222222 21a,即E是C1C的中点. ???????????????13′ 2?D、E分别为AC、C1C的中点,?DE//AC1. ?AC1平面A1BD,?DE?平面A1BD.
又DE?平面BDE,∴平面A1BD?平面BDE. ??????????15′
∴x=
18. 解:(1)设引进设备几年后开始盈利,利润为y万元 则y=50n-[12n+
n(n-1)2
×4]-98=-2n+40n-98 2 由y>0可得10-51 * (2)方案一:年平均盈利 当且仅当2n=y9898=-2n-+40≤-22n?+40=12 n2n98即n=7时取“=” n 共盈利12×7+26=110万元 ????????????????9′ 22 方案二:盈利总额y=-2n+40n-98=-2(n-10)+102 当n=10时,ymax=102 共盈利102+8=110万元???????????????13′ 方案一与方案二盈利客相同,但方案二时间长,∴方案一合算????15′ 19. (1)由f(0)?2可知c?2, ????????1′ 又A??1,2?,故1,2是方程ax2?(b?1)x?c?0的两实根. 1-b? 1+2=??a??, ?????????????????3′ c?2=??a 解得a?1,b??2 ???????????????4′ ?f(x)?x2?2x?2?(x?1)2?1,x???2,2? 当x?1时,f(x)min?f(1)?1,即m?1 ?????????5′ 当x??2时,f(x)max?f(?2)?10,即M?10. ????????6′ (2)由题意知,方程ax2?(b?1)x?c?0有两相等实根x=2, 1-b?2+2=??b=1-4a?a ?????????8′ ??,即?cc=4a??4??a??f(x)?ax2?(1?4a)x?4a,x???2,2? 4a?11?2?, 2a2a1?3?又a?1,故2???,2? ???????????10′ 2a?2??M?f(?2)?16a?2, ?????????11′ 其对称轴方程为x??4a?1?8a?1m?f?, ?????????12′ ??2a4a??1 ??????????13′ ?g(a)?M?m?16a?4a63又g(a)在区间?1,???上为单调递增的,?当a?1时,g(a)min?. ???????15′ 420.解:(1)a2?a1??2,a3?a2??1由?an?1?an?成等差数列知其公差为1, 故an?1?an??2??n?1??1?n?3 ????????3? 1b2?b1??2,b3?b2??1,由?bn?1?bn?等比数列知,其公比为, 2?1?故bn?1?bn??2??? ????6? ?2?an?(an?an?1)?(an?1?an?2)?(an?2?an?3)?????(a2?a1)?a1= 222bn?(bn?bn?1)?(bn?1?bn?2)?(bn?2?bn?3)?????(b2?b1)?b1 (n?1)???2?n?1??n?2??n2?3n?2n2?7n?18??1+6=?2n?8= ???8? n?11???2?1?()n?2?2??+6=2+24?n ???????????????????10? = 11?2n2?7n?18(2)由(1)题知,an= ,所以当n?3或n?4时,an取最小项,其值为3?12' 2n2?7n?18n2?7n?144?n?1?4?n(3)假设k存在,使ak?bk?-2-2=-2??0,? 22?2?n2?7n?144?n125?n2则0?-2? 即n?7n?13?2?n?7n?14 ????15' 22∵n?7n?13与n?7n?14是相邻整数 ∴2 5?n22?Z,这与25?n?Z矛盾,所以满足条件的k不存在 ??????17'