欢迎登录100测评网www.100ceping.com进行学习检测,有效提高学习成绩.
?y?a?x1?x2?x?1 a?1??过定点?0,?.
?a?(2)设AB的中点M?x,y?,?2x?x1?x2
?y1?ax12 ?? 2?y2?ax2 ?y2?y1?a?x2?x1??x2?x1? ?k?y2?y1?a?x2?x1??2ax x2?x11?又?直线l恒过定点?0,??
?a?11y?a,?a?2ax ?k?xx1 ?y?2ax2?.
ay?21.解:(1)??y?kx?m① 2?y?4x② 将①代入②得
k2x2?2k2?4x?k2?0
x1?x22?k24?2k2?x1?x2?,?xp?? 222kk??由①得x??y2?y?y??1代入②得y2?4??1? k?k?44y?4?0,?y1?y2? kk?2?k22?12?yp??y1?y2??,?P??k2,k?? 2k??欢迎登录100测评网www.100ceping.com进行学习检测,有效提高学习成绩.
2kk?l2的斜率k2??
2?k21?k2?12k?f?k??1 1?k2(2)?l1与抛物线由两个交点,?k?0且??0 ?k?0且?1?k?1
?f?k?的定义?域k|?1?k?0或0?k?1? ① 当k??0,1?时,f?k?为减函数 ② 当k???1,0?时,f?k?为增函数 证明:当-1?k1?k2?0时, f?k1??f?k2??11?k22?11?k12??1?k??1?k?2221k2?k122
?1?k12?0,1?k22?0,k12?k22 ?f?k1??f?k2??0 ?f?k1??f?k2? ?f?k?在??1,0??. 同理f?k?在?0,1??.
22.解:设y2?2px上任一点M?x,y?且x?0,A?a,0?
?AM??x?a?2?y2??x?a?2?2px??x??p?a??2?2ap?p2?x?0?
221?12 ①当p?1,a?时,AM???x????x?0?
33?3?2AM ?当x?0时,22min?42,?AB?,此时B?0,0? 93②?p?1,则AM??x??1?a??2?2a?1?x?0?
AM 当对称轴x?a?1?0即a?1时,2min?2a?1,即d?2a?1
欢迎登录100测评网www.100ceping.com进行学习检测,有效提高学习成绩.
AM 当对称轴x?a?1?0即a?1时,2min?a2,即d?a
??2a?1?a?1??d??
??a?a?1??d?5
?2a?1?5?a?5??或?
?a?1?a?1?a?13或a??5
2AM??x??p?5???10p?p2 ③当a?5时,2 若对称轴x?5?p?0即p?5时,取得最小值d?5?4 ?p?5不合题意,舍去.
若对称轴x?5?p?0即p?5时,取得最小值d?10p?p2 ?10p?p2?4
?p?2或p?8??p?5,?舍去? ?所求抛物线的方:程y2为?4x.
本卷由《100测评网》整理上传,专注于中小学生学业检测、练习与提升.