创新、学术、励志、激情 新航道专转本数学内部资料 严禁翻印
19. lim(x?01x?1sinx1xx2)
20. y?arctan21. y?(arcsin,求y?。
),求y?
222. y?(1?x2)arctanx,求y? 123. y?2cosx,求dy ??x2, x?024. f(x)??,求f?(x) ?xarctanx,x?025. f(x)?11?2x1x,求f(n)(0) 26. y?arctan?xlnx,求y?? 27. y?ln(1?2x),求y???(0) 11??28. f(x)??1??,求f?() 2x??x29. y?x2?sin?lnx??cos?lnx??,求y??(1) ?ln130. y?arccosxx11?1?xx2 求y? ?x?(1?x)31. limx?0?e???x? ???,(a?0) 32. limln(xlnx)xax???33. 分析y?ln(x?1)的单调性、凹凸性、极值、拐点 34. 讨论函数ex2在点x?0处是否可导?有没有极值?如果有求出其极值。
14x?6x(万元/单位)。当x=?时,
235. 设生产某种产品x个单位时,成本函数为c(x)?100?
- 58 -
第二章 导数计算及应用
平均成本最小?
36. 某厂生产某产品,年产量为x(百台),总成本c(万元),其中固定成本为2万元,每产100台成本增加1万元,市场上每年可销售此种产品4百台,其销售总收入R(x)是x的函数,12??4x?x,0?x?4R(x)??。问每年生产多少台时总利润最大? 2?8, x?4?37. 某工厂每天生产x台袖珍收音机总成本为c(x)?14,该种收音机独家经x?x?100(元)2营,市场需求规律为x?75?3p,其中p为单价,问每天生产多少台时获利最大?此时每台收音机价格如何? 38. 求函数f(x)?32x(x?6)在区间??2,4?上的最大值与最小值。 239.试证:若m?1,n?1,a?0,则xm?a?x?1n?mnmnm?n?m?n? am?n 40.设x?0,证明:1???ln?1???2x?1x??111n?112x?x241.证明不等式: an?12(n?1)?a?alnan?ann2,(a?1,n?1)。 单元练习题2答案 1、dy?x(lnx?1)dx,2、?12,3、y??x?2xy?y222x?2xy?6y,4、y?f(x0),5、1 6、(1,e);(2,2e?1?2),7、y?1;x?1,8、?y?dy,9、e?1,10、(1,??),11、k 212、?1,13、cos?f?sinf?x???f??sinf?x??cosf?x?f??x?,14、y??2x?1 15、C,16、B,17、C,18、B,19、A,20、C, 21、B,22、B,23、C,24、A 25、y???11?x2,26、dy?2xcos(x?1)e2sin(x?1)2dx,27、y??xsinxsinx???cosxlnx??
x?? - 59 -
创新、学术、励志、激情 新航道专转本数学内部资料 严禁翻印
lny?yxdx,29、y???0???4 xy28、dy?lnx?30、解:y??2xf??x2? y???2f??x2??4x2f???x2? 31、解:设u?lnx?1,x?eu?1,f?u??eedydx22u?1?3eu?1,df?x?dx?eex?1ex?1?3ex?1 32. ?edxdt?2t?sint?cost?tt3 dydtdydteety33. 解:?e?te??t?1?e,e?etty?0?????ett2e?e dydydy1k? ?dt?tdxdxdx?(2e?e)(t?1)dtt?1?1?2e??12e 1????1?y2?x?1??11???x?1?34. 解:y??x?1?, ?n?11?xx?1?1n!????n?y?,n?1??x?1?? ?n?2?35. 用莱布尼茨公式。 36. y?n???1?x22??cosx???n??Cn?1?x12???cosx?2?n?1??Cn?1?x22????cosx???n?2?
?1?x??n?1????n?2??n?????co?sx?sx?sx??????2nxco???n?n?1?co?2???2?
n??n????2?1?x?n?n?1?co?sx???2nxsin?x?? 2?2?????11?ex37. 解:f??x???1??xe??2??x?x12111?ex??11x1ex2,x?0
???1?ex????????1?ex?????hf???0??lim?n?0f?h??f?0?h1?lim?h?01?eh?0, h- 60 -
第二章 导数计算及应用
f???0??lim?h?0f?h??f?0?h?lim?h?011?1。
1?eh所以f??0? 不存在。 38、解f??x??arctan1x?2??x?2?1?1?1???x?2??2
?arctan1x?2??x?2?3,x2?x?2??1?2 f???2??limf???2??limf?2?h??f?2?hf?2?h??f?2?hharctan?limh?0?1h?? 2??h?0?h1hh?0??limarctanh?0??2 因f??2??f???2? 故f??2?不存在 23???x?1??x?1?,x??139、解:f?x??? 22????x?1??x?1?,x??1?2?x?1??x?1?3??x?1?2?3?x?1?2??x?1??x?1?2?3x?1?,x??1? f??x???2????x?1??x?1??3x?1?,x??1f????1??limf??1?h??f??1?hf??1?h??f??1?hh?0??lim??2?h?2h3h?0h?0??0 f????1??limh?0??lim??2?h?2h3h?0h?0??0 ?f???1??0 ?2?x?3??x?1?,x??1???3?x??x?1?,?1?x?3 ?2??x?3??x?1?2,x?3??40、解:y?2?x?3??x?1? - 61 -
创新、学术、励志、激情 新航道专转本数学内部资料 严禁翻印
?2x?2x?3ln2??2x?2?,x??1???x2?2x?3y???2ln2???2x?2?,?1?x?3
?x2?2x?32ln2??2x?2?,x?3??f????1??limf????1??limf??1?h??f??1?hf??1?h??f??1?h2h??1?0?lim?limee?4?h?h?1?1h??1?0h??4?h?h?4 ??4 h??1?0h??1?0h?1?1故x??1,y不可导; f???3??limf???3??limf?3?h??f?3?hf?3?h??f?3?hh?3?0?lim?limeeh?4?h?h?3?0h?h?4?h??4 ??4 h?3?0h?3?0h?x?3时,y?x?不可导 11?2xsin?cos,x?0?41、解(1)f??x??? xx?2x,x?0?f???0??limf???0??limf?h??f?0?hf?h??f?0?hhsin?limh?0?21h?0 h?0?hh?0??lim1xh2h?0?h?0,故f??0??0 (2)limf??x??lim?2xsinx?0?x?0????cos1??不存在 x?故f??x?在x?0处不连续 42、解ylny?x?0,方程两边对x求导 dyy?lny?y?1?0 dxy?lny?1?y??1?0, ???
y???1lny?1
对(*)两端再次对x求导,
- 62 -