②请同学们比一比两个三角形怎样?(板书:完全一样) ③请同学们猜一猜一个三角形的面积是多少?(20平方厘米)
刚才同学们猜得对不对呢?三角形的面积又如何计算呢?今天这节课就研究这个问题。(板书课题) 二、探索研究:
师:刚才我们通过剪、猜得出三角形的面积,其实三角形面积是可以用公式进行计算的。 1、提问:(1)刚才剪出的三角形是什么三角形?(锐角三角形)
(2)一个锐角三角形的面积与平行四边形的面积是什么关系?(板书:三角形的面积是平行四边形面积的一半)
(3)三角形的底与平行四边形的底是什么关系?
(4)锐角三角形的高与平行四边形的高是什么关系?(在刚才的扳书的前面加上“等底等高”) 结论:等底等高的三角形的面积是平行四边形面积半。
设疑:是不是所有的等底等高的三角形的面积都有是平行四边行的面积的一半呢? 2、操作验证。学生操作(1)拿两个直角三角形比一比大小(完全相等) (2)学生把两个完全相等的直角三角形拼成平行四边形
(3)同桌讨论:一个直角三角形的面积与拼成的平行四边形是什么关系?直角三角形的底和高与拼成的平行四边形的底和高是什么关系?(讨论后指名回答) 结论:直角三角形的面积是拼成的平行四边形面积的一半。 学生操作:把两个完全一样的钝角三角形拼成平行四边形。 讨论:钝角三角形的面积、底和高与拼成的平行四边形是什么关系。 结论:钝角三角形的面积是拼成的平行四边形的一半。
3、面积公式(1)通过实验我们知道,等底等高的三角形是平行四边形面积的一半,而平行四边形面积是底乘以高,那么三角形的面积怎么计算呢?为什么? (2)教师扳书:平形四边形的面积 = 底×高 三角形的面积 = 底×高÷2
4、面积公式的应用(1)提问:要求三角形的面积,必须知道那两个条件?
(2)出示虾池的信息图,说说从图中你知道了哪些信息?学生列式解答,并说出根据。集体订正。
(3)求下面三角形的面积
15
(4)课后1。
三、作业 自主练习课后2题。 四、课堂小结
你本节课学到了什么新的知识?
第五课时 三角形的面积练习课
内容:自主练习:P31 4~8
教学目的:1、理解三角形面积公式的来源。
2、理解三角形面积计算公式,会利用公式计算三角形面积
重点、难点及关键:掌握三角形的面积计算公式。 教学过程:
一、师:1、求三角形的面积需要什么条件?
2、三角形的面积=( ),用字母表示( ) 二、自主练习:
1、第2题,学生独立完成,学生在测量三角形的底与对应高时,首先让学生知道测量的对象应是一组对应的底与,而不是盲目的测量。并求出三角形的面积。 2、 第4、5题 学生根据三角形的面积公式,求出表中的三角形的面积。 3、第3题是求三角形的底或高,一是用转化法求,二是用方程求。 4、 第7题,判断。小组讨论完成,并说出判断的理由。 5、第8题
1、学生计算不同三角形的面积。
16
2、学生发表自己的见解:这些三角形的面积都相等。为什么?学生讨论。 3、归纳:三角形的面积与它的底和高有关系,与它的形状没有关系。 三、补充练习。
下面两个三角形的面积相等吗?为什么?每个三角形的面积是多少?
(单位:厘米)
第六课时 三角形的面积练习课
内容:自主练习:P32 9~13
教学目的:进一步理解三角形面积计算公式,熟练利用公式计算三角形面积。 重点、难点及关键:熟练利用三角形的面积计算公式。 教学过程:
一、师:1、三角形的面积=( ),用字母表示( ) 2、求三角形的面积需要什么条件? 二、自主练习:
1、第9题;引导学生说出自己的估算方法。
2、第10、11、12题是解决实际问题,学生独立解决,集体订正。
3、第13题有一定难度的思考题,可以不做统一要求。练习时,可引导学生通过计算求出三角形的底和高,进而求出三角形的面积;也可以通过找5米和1米的倍数关系,求出三角形的面积。 三、补充练习。
17
第七课时 梯形的认识
内容:信息窗3 P34~P35 自主练习:P37 1、2 教学目的:1、认识梯形及其各部分名称;
2、认识梯形的底和高,会画梯形的高; 3、 认识等腰梯形和直角梯形。
重点、难点及关键:认识梯形及其各部分的名称。 教学过程: 一、谈话引入:
1、什么是平行四边形?
2、出示:信息窗3图 问:这些图形是平行四边形吗?为什么? 3、这些图形叫梯形。 二、探索新知:
1、观察:梯形有哪些特征?(有4个角,4条边,只有一组对边平行) 2、小结:只有一组对边平行的四边形叫梯形。
3、这个概念中特别注意的是哪几个字?(“只有”要与“有”加以区别) 4、 学习什么是梯形的上底、下底和腰?
在梯形里,互相平行的一组对边分别叫梯形的上底和下底,不平行的一组对边分别叫梯
形的腰。
5、学生分别指出图中梯形的上底、下底和腰。 6、认识梯形的高: (1) 先确定上底中的一点; (2) 过这点向下底作垂线;
(3) 这点和垂足之间的线段叫梯形的高。 7、出示等腰梯形,请学生们观察它的特征
(两腰相等)引出等腰梯形的概念 三、巩固练习:
1、按下图把一张长方形的纸对折后剪一刀,剪成一个什么图形?这个图形有什么特点?
18
2、分别量出上题中梯形的上底、相等和高。
(1)上底( )mm 下底( )mm 高( )mm (2)上底( )mm 下底( )mm 高( )mm 3、自主练习: P37 1、 2 四、总结:
今天学习了什么?梯形的特征是什么?
第八课时 梯形的面积
内容:P35 红点(梯形面积公式推导) 自主练习:P37 3~6
教学目的:1、通过实际操作使学生明确把梯形可以转化成我们已学过的图形。
2、梯形面积=(上底+下底)×高÷2。
重点、难点及关键:明确梯形面积的推导过程。灵活运用所学知识解决实际问题。 教学过程:
一、设置情境,提出问题:
1、展示问题:1号甲鱼 池平面图(梯形),它的面积是多少? 上底:80米, 下底:100米,高:60米
2、拿出准备的梯形,想法设法求出它的面积。先独立思考,再小组内总结交流。 3、总结归纳:P35下 二、感悟体验,研究问题
1、自己来拼,边拼边叙述拼的过程。
2、想一想,拼成的平行四边形和梯形有何联系,你从中发现了什么? 3、推导出梯形的面积公式:(上底+下底)×高÷2 (上底+下底)×高 求得是什么? 为什么要÷2
4、用字母表示梯形的面积公式,说明每个字母所表示的意思。S=(a+b)×h÷2 三、解决问题:
1、现在你能求出1号甲鱼池的面积吗? 需要什么条件?
19