(2)因为数列{an}的公差d=1,且S5>a1a9, 所以5a1+10>a12+8a1, 即a12+3a1-10<0,解得-5
15.(2013·广东高考理科·T19)设数列{an}的前n项和为Sn,已知
a1?1,2Sn12?an?1?n2?n?,n?N?. n33(1)求a2的值;
(2)求数列{an}的通项公式; (3)证明:对一切正整数n,有
11??a1a2?17?. an4【解题指南】本题以递推数列为背景,考查通项公式与前n项和的关系及不等式的证明,要注意转化思想、构造法、数学归纳法的应用.证明不等式的过程中,放缩的尺度要拿捏准确.
2Sn12?an?1?n2?n?中令n?1,可得a2?4; n3312n(n?1)(n?2)(2)由已知可得2Sn?nan?1?n3?n2?n,即2Sn?nan?1?①,则当n?2333(n?1)n(n?1)时,2Sn?1?(n?1)an?②,①?②可得2an?nan?1?(n?1)an?n(n?1),也就是
3aaa(n?1)an?nan?1?n(n?1),同除以n(n?1)可得n?1?n?1,数列{n}是公差为1的等
nn?1naa
差数列,且1?1,所以n?n,an?n2,显然a1?1也满足an?n2,即所求通项公
1n【解析】(1)因为a1?1,在
式为an?n2. (3)当n?1时,当n?2时,当n?3时,
117?2?1?结论成立; a11411157??1???结论成立; a1a244411111?2???,则annn(n?1)n?1n- 11 -
11??a1a2??1111?1??2?2?an434??1111?1????42?33?4n2?1n(n?1)51111?????423341171711????,即对一切n?N?,??n?1n4n4a1a2?17?成立. an416.(2013·广东高考文科·T19)设各项均为正数的数列?an?的前n项和为Sn,
2?满足4Sn?an?4n?1,n?N,且a2,a5,a14构成等比数列. ?1(1) 证明:a2?4a1?5; (2) 求数列?an?的通项公式; (3) 证明:对一切正整数n,有
11??a1a2a2a3?11?. anan?12【解题指南】本题以递推数列为背景,考查通项公式与前n项和的关系及不等式的证明,要注意转化思想、构造法、数学归纳法的应用.证明不等式的过程中,放缩的尺度要拿捏准确.
22【解析】(1)当n?1时,4a1?a2?5,a2?4a1?5,因为an?0,所以a2?4a1?5;
222(2)当n?2时,4Sn?1?an?4?n?1??1,4an?4Sn?4Sn?1?an?1?an?4,22an?1?an?4an?4??an?2?,
2因为an?0,所以an?1?an?2,当n?2时,?an?是公差d?2的等差数列.
22因为a2,a5,a14构成等比数列,a5?a2?a14,?a2?6??a2??a2?24?,解得a2?3,
2由(1)可知,4a1?a2?5=4,a1?1,又因为a2?a1?3?1?2,则?an?是首项a1?1,公
差d?2的等差数列.数列?an?的通项公式为an?2n?1. (3)
11??a1a2a2a3?1111????anan?11?33?55?7?(?1?2n?1??2n?1?
111111?[(1?)?(?)?(?)?23355711111?)]?(1?)?. 2n?12n?122n?1217. (2013·山东高考理科·T20)设等差数列{an}的前n项和为Sn,且S4=4S2,a2n=2an+1
- 12 -
(Ⅰ) 求数列{an}的通项公式; (Ⅱ) 设数列{bn}的前n项和Tn,且Tn+(n∈N?).求数列{cn}的前n项和Rn.
【解题指南】(Ⅰ)先设出等差数列的首项和公差,然后根据S4?4S2,a2n?2an?1可列方程组求得数列的通项公式;(Ⅱ)先根据前n 项和与通项的关系求出?bn? 的通项公式,由cn=b2n求出?cn? 的通项,再利用错位相减法求出Rn. 【解析】(Ⅰ)设等差数列?an?的首项为a1,公差为d, 由S4?4S2,a2n?2an?1得
4a1?6d?8a1?4d,? ?????a?2n?1d?2a?2n?1d?11?1an?1
= ?(?为常数),令cn=b2n,2n
解得a1?1,d?2, 因此an?2n?1,n?N*
n, 2n?1nn?1n?2所以n?2时,bn?Tn?Tn?1=?n?1?n?2?n?1
222(Ⅱ)由题意知Tn???2n?21?*故cn?b2n?2n?1??n?1????,n?N
2?4?1??1??1??1??1?所以Rn?0?????1??2??3??????n?1????????????4??4??4??4??4?1234n0123n?1n?1,
11??1??1??1??1?则Rn?0?????1????2????3?????????n?1????, 4?4??4??4??4??4?31??1??1??1??1?两式相减得Rn????????????????????4?4??4??4??4??4?n1234n?1?1???n?1???
?4?n1?1????nn11?3n?1?4?4??1???n?1????? ??? 133?4??4?1?4- 13 -
13n?1?整理得Rn???4?n?1?,
9?4?13n?1?所以 数列?cn?的前n项和Rn???4?n?1?.
9?4?18. (2013·山东高考文科·T20)设等差数列{an}的前n项和为Sn,且S4=4S2,a2n=2an+1
(Ⅰ) 求数列{an}的通项公式; (Ⅱ)设数列?bn?满足
bb1b21??????n?1?n,n?N* ,求?bn?的前n项和Tn. a1a2an2【解题指南】(Ⅰ)先设出等差数列的首项和公差,然后根据S4?4S2,a2n?2an?1可列方程组求得数列的通项公式;(Ⅱ)先根据的通项公式,再利用错位相减法求出Tn.
【解析】(Ⅰ)设等差数列?an?的首项为a1,公差为d, 由S4?4S2,a2n?2an?1得
4a1?6d?8a1?4d,? ??a1??2n?1?d?2a1?2?n?1?d?1bb1b21??????n?1?n,n?N*求出bna1a2an2解得a1?1,d?2, 因此an?2n?1,n?N* (Ⅱ)由已知当n?1时,当n?2时,所以
bb1b21??????n?1?n,n?N*, a1a2an2b11?, a12bn1?1?1?1?n??1?n?1??n, an2?2?2bn1?n,n?N*, an2- 14 -
由(Ⅰ)知an?2n?1,n?N*,
2n?1,n?N*, n21352n?1又Tn??2?3?????n,
222211352n?32n?1Tn?2?3?4??????n?1, n222222所以bn?两式相减得Tn????321212222?2n?1, ?????????2?2223242n?2n?112n?1?, 2n?12n?1 ??所以Tn?3?2n?3. n219. (2013·陕西高考文科·T17)设Sn表示数列{an}的前n项和. (Ⅰ) 若{an}是等差数列, 推导Sn的计算公式; (Ⅱ) 若a1?1,q?0, 且对所有正整数n, 证明你的结论.
,n?1?S1【解题指南】倒序相加法推导等差数列的前n项和;利用an??,n?2?Sn?Sn?11?qn有Sn?1?q. 判断{an}是否为等比数列,并
推导an的通项公式判断是否为等比数列. 【解析】(Ⅰ) 设公差为d,则an?a1?(n?1)d,
?Sn?a1?a2???an?1?an?2Sn?(a1?an)?(a2?an?1)???(an?1?a1)?(an?a1)?S?a?a???a?ann?121?n?2Sn?n(a1?an)?Sn?n(a1?an)n?1?n(a1?d). 22(Ⅱ) {an}是等比数列.证明如下:
1?qn1?qn?11?qnqn?qn?1?an?1?Sn?1?Sn????qn, 因为Sn?1?q1?q1?q1?q又因为a1?1,q?0,所以当n≥1时,
- 15 -
an?1qn有?n?1?q, anq因此,数列{an}是首项1,公比q?0的等比数列.
20. (2013·新课标Ⅰ高考文科·T17)已知等差数列{an}的前n项和Sn满足S3?0,
S5?5.
(Ⅰ)求{an}的通项公式; (Ⅱ)求数列???1?的前n项和.
?a2n?1a2n?1?【解题指南】(Ⅰ)利用S3?0,S5?5求出等差数列的首项及公差,利用
an?a1?(n?1)d求出{an}的通项公式;
(Ⅱ)将(Ⅰ)中的通项公式,代入到?和.
??1?中,利用裂项相消法求前n项
?a2n?1a2n?1?【解析】(Ⅰ)设数列{an}的公差为d,则Sn?na1?由已知可得??a?1.?3a1?3d?0,解得?1
?d??1.?5a1?10d??5.n(n?1)d. 2故{an}的通项公式为an?2?n. (Ⅱ)由(Ⅰ)知从而数列??11111??(?),
a2n?1a2n?1(3?2n)(1?2n)22n?32n?1?1?的前n项和为
aa?2n?12n?1?1111111n(?????????)? 2?11132n?32n?11?2n- 16 -