∠BDA =∠AEC ∠2 = ∠3 AB = AC
∴△ABD≌△CAE
∴BD = AE且AD = CE ∴AE-AD = BD-CE ∴DE = BD-CE
规律27.三角形一边的两端点到这边的中线所在的直线的距离相等. 例:AD为△ABC的中线,且CF⊥AD于F,BE⊥AD的延长线于E
求证:BE = CF 证明:(略)
A
F 2BC1D
E 规律28.条件不足时延长已知边构造三角形. 例:已知AC = BD,AD⊥AC于A,BCBD于B
求证:AD = BC
证明:分别延长DA、CB交于点E
∵AD⊥AC BC⊥BD
o
∴∠CAE = ∠DBE = 90在△DBE和△CAE中 ∠DBE =∠CAE
EBD = AC ∠E =∠E
AB∴△DBE≌△CAE
O∴ED = EC,EB = EA
CD∴ED-EA = EC- EB ∴AD = BC
规律29.连接四边形的对角线,把四边形问题转化成三角形来解决问题. 例:已知,如图,AB∥CD,AD∥BC 求证:AB = CD
证明:连结AC(或BD)
A∵AB∥CD,AD∥BC D13∴∠1 = ∠2
24在△ABC和△CDA中, BC
- 11 -
∠1 = ∠2 AC = CA ∠3 = ∠4 ∴△ABC≌△CDA
E∴AB = CD
C练习:已知,如图,AB = DC,AD = BC,DE = BF, D求证:BE = DF BA
F 规律30.有和角平分线垂直的线段时,通常把这条线段延长。可归结为“角分垂等腰归”.
o
例:已知,如图,在Rt△ABC中,AB = AC,∠BAC = 90,∠1 = ∠2 ,CE⊥BD的延
长线于E
求证:BD = 2CE
证明:分别延长BA、CE交于F
∵BE⊥CF
o
∴∠BEF =∠BEC = 90
F在△BEF和△BEC中 A∠1 = ∠2 ED BE = BE 12BC∠BEF =∠BEC
∴△BEF≌△BEC
∴CE = FE =
1CF 2o
∵∠BAC = 90 , BE⊥CF
o
∴∠BAC = ∠CAF = 90
o
∠1+∠BDA = 90
o
∠1+∠BFC = 90 ∠BDA = ∠BFC 在△ABD和△ACF中 ∠BAC = ∠CAF ∠BDA = ∠BFC AB = AC
∴△ABD≌△ACF ∴BD = CF ∴BD = 2CE
练习:已知,如图,∠ACB = 3∠B,∠1 =∠2,CD⊥AD于D,
- 12 -
求证:AB-AC = 2CD
A12D BC
规律31.当证题有困难时,可结合已知条件,把图形中的某两点连接起来构造全等三角
形.
AD例:已知,如图,AC、BD相交于O,且AB = DC,AC = BD,
O求证:∠A = ∠D 证明:(连结BC,过程略)
BC 规律32.当证题缺少线段相等的条件时,可取某条线段中点,为
证题提供条件.
例:已知,如图,AB = DC,∠A = ∠D 求证:∠ABC = ∠DCB
证明:分别取AD、BC中点N、M, AD连结NB、NM、NC(过程略) CB
规律33.有角平分线时,常过角平分线上的点向角两边做垂线,利用角平分线上的点到
角两边距离相等证题.
例:已知,如图,∠1 = ∠2 ,P为BN上一点,且PD⊥BC于D,AB+BC = 2BD,
o
求证:∠BAP+∠BCP = 180
EAN证明:过P作PE⊥BA于E P∵PD⊥BC,∠1 = ∠2 12BDC∴PE = PD
在Rt△BPE和Rt△BPD中 BP = BP PE = PD
∴Rt△BPE≌Rt△BPD ∴BE = BD
∵AB+BC = 2BD,BC = CD+BD,AB = BE-AE ∴AE = CD
∵PE⊥BE,PD⊥BC
o
∠PEB =∠PDC = 90在△PEA和△PDC中 PE = PD
- 13 -
∠PEB =∠PDC AE =CD
∴△PEA≌△PDC ∴∠PCB = ∠EAP
o
∵∠BAP+∠EAP = 180
o
∴∠BAP+∠BCP = 180
练习:1.已知,如图,PA、PC分别是△ABC外角∠MAC与∠NCA的平分线,它们交于P,
PD⊥BM于M,PF⊥BN于F,求证:BP为∠MBN的平分线 M DAP
BC FN
oo
2. 已知,如图,在△ABC中,∠ABC =100,∠ACB = 20,CE是∠ACB的平分
o
线,D是AC上一点,若∠CBD = 20,求∠CED的度数。
B
E
AC D
规律34.有等腰三角形时常用的辅助线 ⑴作顶角的平分线,底边中线,底边高线 例:已知,如图,AB = AC,BD⊥AC于D,
求证:∠BAC = 2∠DBC
证明:(方法一)作∠BAC的平分线AE,交BC于E,则∠1 = ∠2 =
又∵AB = AC
∴AE⊥BC
o
∴∠2+∠ACB = 90∵BD⊥AC
o
∴∠DBC+∠ACB = 90 ∴∠2 = ∠DBC ∴∠BAC = 2∠DBC
(方法二)过A作AE⊥BC于E(过程略) (方法三)取BC中点E,连结AE(过程略)
- 14 -
1∠BAC 2A12DBEC
⑵有底边中点时,常作底边中线
例:已知,如图,△ABC中,AB = AC,D为BC中点,DE⊥AB于E,DF⊥AC于F,
求证:DE = DF 证明:连结AD.
A∵D为BC中点, ∴BD = CD
EF又∵AB =AC
BCD∴AD平分∠BAC ∵DE⊥AB,DF⊥AC ∴DE = DF
⑶将腰延长一倍,构造直角三角形解题
例:已知,如图,△ABC中,AB = AC,在BA延长线和AC上各取一点E、F,使AE
= AF,求证:EF⊥BC
证明:延长BE到N,使AN = AB,连结CN,则AB = AN = AC
∴∠B = ∠ACB, ∠ACN = ∠ANC
oN∵∠B+∠ACB+∠ACN+∠ANC = 180
Eo
∴2∠BCA+2∠ACN = 180
Ao
∴∠BCA+∠ACN = 90
o F即∠BCN = 90
BC∴NC⊥BC
∵AE = AF
∴∠AEF = ∠AFE
又∵∠BAC = ∠AEF +∠AFE ∠BAC = ∠ACN +∠ANC ∴∠BAC =2∠AEF = 2∠ANC ∴∠AEF = ∠ANC ∴EF∥NC ∴EF⊥BC
⑷常过一腰上的某一已知点做另一腰的平行线
例:已知,如图,在△ABC中,AB = AC,D在AB上,E在AC延长线上,且BD = CE,
连结DE交BC于F 求证:DF = EF 证明:(证法一)过D作DN∥AE,交BC于N,则∠DNB = ∠ACB,∠NDE = ∠E,
∵AB = AC, ∴∠B = ∠ACB ∴∠B =∠DNB AA∴BD = DN
DD12 - 15 - BNFCEB1F2CEM