高考专项训练10:文科概率专项训练(2)

2019-04-02 12:16

则P(E)=

点评:本题考查列举法计算概率,注意列举时按一定的规律、顺序,一定做到不重不漏,还有助于查找基本事件的数目.

3.(2010?山东)一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4. (Ⅰ)从袋中随机抽取两个球,求取出的球的编号之和不大于4的概率;

(Ⅱ)先从袋中随机取一个球,该球的编号为m,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n,求n<m+2的概率.

考点:互斥事件的概率加法公式;互斥事件与对立事件。

分析:(1)从袋中随机抽取两个球,可能的结果有6种,而取出的球的编号之和不大于4的事件有两个,1和2,1和3,两种情况,求比值得到结果.

(2)有放回的取球,根据分步计数原理可知有16种结果,满足条件的比较多不好列举,可以从他的对立事件来做. 解答:解:(1)从袋中随机抽取两个球,可能的结果有6种, 而取出的球的编号之和不大于4的事件有两个,1和2,1和3, ∴取出的球的编号之和不大于4的概率P=

(2)先从袋中随机取一个球,该球的编号为m,将球放回袋中, 然后再从袋中随机取一个球,该球的编号为n, 所有(m,n)有4×4=16种,

而n≥m+2有1和3,1和4,2和4三种结果, ∴P=1﹣

=

点评:本小题主要考查古典概念、对立事件的概率计算,考查学生分析问题、解决问题的能力.能判断一个试验是否是古典概型,分清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数.

4.(2010?历下区)某商场举行抽奖活动,从装有编号0,1,2,3四个小球的抽奖箱中,每次取出后放回,连续取两次,取出的两个小球号码相加之和等于5中一等奖,等于4中二等奖,等于3中三等奖. (1)求中三等奖的概率;

(2)求中奖的概率.

考点:列举法计算基本事件数及事件发生的概率。

专题:计算题。 分析:(1)本题是一个等可能事件的概率,从四个小球中有放回的取两个共有的结果数可以通过列举得到共有16种结果,两个小球号码相加之和等于3的取法有4种,得到概率.

(2)本题是一个等可能事件的概率,从四个小球中有放回的取两个共有的结果数可以通过列举得到共有16种结果,中奖包括三种情况,这三种情况是互斥的,看出结果,写出概率.

解答:解:设“中三等奖”的事件为A,“中奖”的事件为B,从四个小球中有放回的取两个共有(0,0),(0,1),(0,2),(0,3),(1,0),(1,1),(1,2),(1,3),(2,0), (2,1),(2,2),(2,3),(3,0),(3,1),(3,2),(3,3)16种不同的方法. (1)两个小球号码相加之和等于3的取法有4种:(0,3)、(1,2)、(2,1)、(3,0) ∴

(2)两个小球号码相加之和等于3的取法有4种. 两个小球相加之和等于4的取法有3种:(1,3),(2,2),(3,1) 两个小球号码相加之和等于5的取法有2种:(2,3),(3,2) ∴

点评:本题考查用列举法得到事件数和等可能事件的概率,解题的关键是正确列举出试验发生所包含的事件数,这里一般按照数字的大小顺序来列举.

5.(2010?江西)某迷宫有三个通道,进入迷宫的每个人都要经过一扇智能门.首次到达此门,系统会随机(即等可能)为你打开一个通道.若是1号通道,则需要1小时走出迷宫;若是2号、3号通道,则分别需要2小时、3小时返回智能门.再次到达智能门时,系统会随机打开一个你未到过的通道,直至走出迷宫为止. (1)求走出迷宫时恰好用了1小时的概率; (2)求走出迷宫的时间超过3小时的概率. 考点:相互独立事件的概率乘法公式。

专题:计算题。 分析:(1)由题意知本题是一个等可能事件的概率,试验发生包含的所有事件数为3,而满足条件的事件数是1,根据古典概型的概率公式得到结果.

(2)走出迷宫的时间超过3小时这一事件,包括三种情况,且这三种情况是互斥的,一是进入2号通道,回来后又进入3号通道,二是进入3号通道,回来后又进入2号通道,三是进入3号通道,回来后又进入1号通道的概率,根据相互独立事件和互斥事件的概率公式得到结果. 解答:解:(1)由题意知本题是一个等可能事件的概率 ∵试验发生包含的所有事件数为3, 而满足条件的事件数是1,

设A表示走出迷宫时恰好用了1小时这一事件, ∴P(A)=.

(2)设B表示走出迷宫的时间超过3小时这一事件, 本事件包括三种情况,且这三种情况是互斥的, 一是进入2号通道,回来后又进入3号通道的概率是二是进入3号通道,回来后又进入2号通道的概率是三是进入3号通道,回来后又进入1号通道的概率是则P(B)=

=.

= = =

点评:考查数学知识的实际背景,重点考查相互独立事件的概率乘法公式计算事件的概率、随机事件的数学特征和对思维能力、运算能力、实践能力的考查.

6.(2009?重庆)某单位为绿化环境,移栽了甲、乙两种大树各2株、设甲、乙两种大树移栽的成活率分别为和,且各株大树是否成活互不影响、求移栽的4株大树中: (Ⅰ)至少有1株成活的概率;

(Ⅱ)两种大树各成活1株的概率.

考点:互斥事件的概率加法公式;相互独立事件的概率乘法公式。 分析:(1)因各株大树是否成活互不影响,本题考查的是相互独立事件同时发生的概率,至少有1株成活包括的情况较多,所以从它的对立事件1株也不活 来考虑.

(2)应用独立重复试验中事件发生的概率公式,同时又有相互独立事件同时发生的概率,代入公式进行运算. 解答:解:设Ak表示第k株甲种大树成活,k=1,2 设Bl表示第l株乙种大树成活,l=1,2 则A1,A2,B1,B2独立, 且

(Ⅰ)至少有1株成活的概率为:

(Ⅱ)由独立重复试验中事件发生的概率公式知, 两种大树各成活1株的概率为:

点评:考查运用概率知识解决实际问题的能力,相互独立事件是指,两事件发生的概率互不影响,而对立事件是指同一次试验中,不会同时发生的事件,遇到求用至少来表述的事件的概率时,往往先求它的对立事件的概率. 7.(2009?天津)在10件产品中,有3件一等品,4件二等品,3件三等品.从这10件产品中任取3件,求: (I)取出的3件产品中一等品件数X的分布列和数学期望; (II)取出的3件产品中一等品件数多于二等品件数的概率. 考点:离散型随机变量的期望与方差;古典概型及其概率计算公式。 专题:计算题。

分析:(Ⅰ)由题意知本题是一个古典概型,试验包含的所有事件是从10件产品中任取3件的结果为C103,满足条

件的事件是从10件产品中任取3件,其中恰有k件一等品的结果数为C3kC73k,写出概率,分布列和期望. (II)取出的3件产品中一等品件数多于二等品件数包括三种情况,一是恰好取出1件一等品和2件二等品,二是恰好取出2件一等品,三是恰好取出3件一等品,这三种情况是互斥的,根据互斥事件的概率,得到结果. 解答:解:(Ⅰ)由题意知本题是一个古典概型,

由于从10件产品中任取3件的结果为C10,

从10件产品中任取3件,其中恰有k件一等品的结果数为C3kC73k, 那么从10件产品中任取3件,其中恰有k件一等品的概率为P(X=k)=∴随机变量X的分布列是

,k=0,1,2,3.

3

∴X的数学期望EX=

(Ⅱ)解:设“取出的3件产品中一等品件数多于二等品件数”为事件A,

“恰好取出1件一等品和2件三等品”为事件A1“恰好取出2件一等品“为事件A2, ”恰好取出3件一等品”为事件A3由于事件A1,A2,A3彼此互斥, 且A=A1∪A2∪A3而P(A2)=P(X=2)=

,P(A3)=P(X=3)=,

∴取出的3件产品中一等品件数多于二等品件数的概率为 P(A)=P(A1)+P(A2)+P(A3)=

+

+

=

点评:本题考查离散型随机变量的分布列和期望,这种类型是近几年高考题中经常出现的,考查离散型随机变量的分布列和期望,大型考试中理科考试必出的类型题目.

8.(2009?四川)为振兴旅游业,四川省2009年面向国内发行总量为2000万张的熊猫优惠卡,向省外人士发行的是熊猫金卡(简称金卡),向省内人士发行的是熊猫银卡(简称银卡).某旅游公司组织了一个有36名游客的旅游团到四川名胜旅游,其中是省外游客,其余是省内游客.在省外游客中有持金卡,在省内游客中有持银卡. (I)在该团中随机采访2名游客,求恰有1人持银卡的概率;

(II)在该团中随机采访2名游客,求其中持金卡与持银卡人数相等的概率. 考点:等可能事件的概率;组合及组合数公式。

专题:计算题。

分析:(I)由题意得,省外游客有36×,其中27×持金卡;省内游客有36×人,其中9×人持银卡,这是一个等可能事件的概率,事件发生包含的所有事件是从36人中选2人,共有C362种结果,得到概率.

(II)采访该团2人,持金卡人数与持银卡人数相等包含两种情况,一是采访该团2人,持金卡0人,持银卡0人,二是采访该团2人,持金卡1人,持银卡1人,这两种结果是互斥的根据互斥事件的概率和等可能事件的概率公式,得到结果.

解答:解:(I)由题意得,省外游客有36×=27人,其中27×=9人持金卡;省内游客有36×=9人,其中9×=6人持银卡

设事件A为“采访该团2人,恰有1人持银卡”, 这是一个等可能事件的概率,

事件发生包含的所有事件是从36人中选2人,共有C362种结果,

11

而满足条件的事件数是C6C30 ∴

即采访该团2人,恰有1人持银卡的概率是

(II)设事件B为“采访该团2人,持金卡人数与持银卡人数相等”,可以分为: 事件B1为“采访该团2人,持金卡0人,持银卡0人”,

或事件B2为“采访该团2人,持金卡1人,持银卡1人”两种情况, ∴

即采访该团2人,持金卡与持银卡人数相等的概率是

点评:本题考查等可能事件的概率和互斥事件的概率,是一个基础题,学好等可能事件的概率可以为其它概率的学习奠定基础,有利于计算一些事件的概率,有利于解释生活中的一些问题.

9.(2009?陕西)椐统计,某食品企业一个月内被消费者投诉的次数为0,1,2的概率分别为0.4,0.5,0.1 (Ⅰ)求该企业在一个月内共被消费者投诉不超过1次的概率; (Ⅱ)假设一月份与二月份被消费者投诉的次数互不影响,求该企业在这两个月内共被消费者投诉2次的概率. 考点:相互独立事件的概率乘法公式。

分析:本题考查的知识点是相互独立事件的概率乘法公式.

(1)设事件A表示“一个月内被投诉的次数为0”,事件B表示“一个月内被投诉的次数为1”,由一个月内被消费者投诉的次数为0,1的概率分别为0.4,0.5,则该企业在一个月内共被消费者投诉不超过1次的概率P=P(A+B)=P(A)+P(B),代入即可求出答案. (2)设事件Ai表示“第i个月被投诉的次数为0”,事件Bi表示“第i个月被投诉的次数为1”,事件Ci表示“第i个月被投诉的次数为2”,事件D表示“两个月内被投诉2次”,该企业在这两个月内共被消费者投诉2次的概率.P(D)=P(A1C2+A2C1)+P(B1B2)=P(A1C2)+P(A2C1)+P(B1B2),代入数据运算后,易得最终答案. 解答:解:(Ⅰ)设事件A表示“一个月内被投诉的次数为0”, 事件B表示“一个月内被投诉的次数为1”

所以P(A+B)=P(A)+P(B)=0.4+0.5=0.9 (Ⅱ)设事件Ai表示“第i个月被投诉的次数为0”, 事件Bi表示“第i个月被投诉的次数为1”, 事件Ci表示“第i个月被投诉的次数为2”, 事件D表示“两个月内被投诉2次”

所以P(Ai)=0.4,P(Bi)=0.5,P(Ci)=0.1(i=1,2)

所以两个月中,一个月被投诉2次,另一个月被投诉0次的概率为P(A1C2+A2C1) 一、二月份均被投诉1次的概率为P(B1B2)

所以P(D)=P(A1C2+A2C1)+P(B1B2)=P(A1C2)+P(A2C1)+P(B1B2) 由事件的独立性的p(D)=0.4×0.1+0.1×0.4+0.5×0.5=0.33.

点评:本小题主要考查相互独立事件概率的计算,运用数学知识解决问题的能力,要想计算一个事件的概率,首先我们要分析这个事件是分类的(分几类)还是分步的(分几步),然后再利用加法原理和乘法原理进行求解. 10.(2009?江西)某公司拟资助三位大学生自主创业,现聘请两位专家,独立地对每位大学生的创业方案进行评审、假设评审结果为“支持”或“不支持”的概率都是、若某人获得两个“支持”,则给予10万元的创业资助;若只获得一个“支持”,则给予5万元的资助;若未获得“支持”,则不予资助、求: (1)该公司的资助总额为零的概率;

(2)该公司的资助总额超过15万元的概率.

考点:n次独立重复试验中恰好发生k次的概率;互斥事件的概率加法公式。 专题:计算题。

分析:(1)独立地对每位大学生的创业方案进行评审,该公司的资助总额为零表示三个大学生都没有获得支持,这三个大学生是否获得支持是相互独立的,根据相互独立事件的概率公式得到结果.

(2)公司的资助总额超过15万元,表示三个大学生得到四个支持,五个支持和六个支持,这三个事件之间是互斥的,根据独立重复试验和互斥事件的概率公式得到结果.

解答:解:(1)由题意知独立地对每位大学生的创业方案进行评审、 假设评审结果为“支持”或“不支持”的概率都是、 该公司的资助总额为零表示三个大学生都没有获得支持, 这三个大学生是否获得支持是相互独立的, 设A表示资助总额为零这个事件, 则

(2)公司的资助总额超过15万元,表示三个大学生得到四个支持, 五个支持和六个支持,这三个事件之间是互斥的, 设B表示资助总额超过15万元这个事件, ∴P=即

点评:本题考查独立重复试验概率公式,考查互斥事件的概率,考查相互独立事件的概率,是一个综合题,解题的关键是读懂题意.

11.(2009?福建)袋中有大小、形状相同的红、黑球各一个,现一次有放回地随机摸取3次,每次摸取一个球 (Ⅰ)试问:一共有多少种不同的结果?请列出所有可能的结果; (Ⅱ)若摸到红球时得2分,摸到黑球时得1分,求3次摸球所得总分为5的概率. 考点:等可能事件的概率;随机事件。 专题:计算题。

分析:(1)由分步计数原理知这个过程一共有8个结果,按照一定的顺序列举出所有的事件,顺序可以是按照红球的个数由多变少变化,这样可以做到不重不漏. (2)本题是一个等可能事件的概率,由前面可知试验发生的所有事件数,而满足条件的事件包含的基本事件为:(红、红、黑)、(红、黑、红)、(黑、红、红),根据古典概型公式得到结果. 解答:解:(I)一共有8种不同的结果,列举如下:

(红、红、红、)、(红、红、黑)、(红、黑、红)、(红、黑、黑)、(黑、红、红)、(黑、红、黑)、(黑、黑、红)、(黑、黑、黑)


高考专项训练10:文科概率专项训练(2).doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:MODULE1 HOW TO LEARN ENGLISH导学案(2013年新版外研版)

相关阅读
本类排行
× 注册会员免费下载(下载后可以自由复制和排版)

马上注册会员

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: