基于MATLAB的图像处理及跟踪算法(2)

2019-04-10 19:57

断技术获得了诺贝尔奖,说明它对人类作出了划时代的贡献。1972年美国陆地资源卫星(Landsat)将多谱图像用于资源探测。同年,计算机层析仪(CT)问世,它将图像重建技术用于医学[2]。

20世纪70年代中期开始,随着计算机技术和人工智能、思维科学研究的迅速发展,数字图像处理向更高、更深层次发展。人们已开始研究如何使用计算机系统解释图像,实现类似人类视觉系统理解外部世界,这被称为图像理解或计算机视觉。很多国家,特别是发达国家投入更多的人力、物力到这项研究,取得了不少重要的研究成果。其中代表性的成果是70年代末MIT的Marr提出的视觉计算理论,这个理论成为计算机视觉其后十多年的主导思想。图像理解虽然在理论方法研究上已取得了不小的进展,但它本身是一个比较难的研究领域,存在不少困难,因人类本身对自己的视觉过程还了解甚少,因此计算机视觉是一个有待人们进一步探索新的领域。

1.2 课题研究目的及意义

最早的图像处理时上世纪六七十年代,随着电子技术和计算机技术的不断提高和普及,数字图像处理进入高速发展时期。数字图像处理就是利用数字计算机或者其他数字硬件,对图像信息转换而得的电信号进行某些数学运算,以提高图像的实用性。例如从卫星图片中提取目标物的特征参数,三维立体断层图像的重建等等。数字图像处理技术处理精度比较高,而且还可以通过改进处理软件来优化处理效果。总的来说,数字图像处理包括点运算、几何处理、图像增强、图像还原、图像形态学处理、图像编码、图像重建、模式识别等。

由于计算机技术处理能力不断增强,数字图像处理学科在飞速发展的同时,也越来越广泛地向其他许多学科快速交叉渗透,使得图像作为信息获取以及信息的利用等方面也变得越来越重要。目前数字图像处理应用越来越广泛,已经渗透到工业、医疗保健、航空航天、军事等各个领域,在国民经济中发挥越来越大的作用。MathWorks公司推出的MATLAB是学习数理知识的好帮手。应用MATLAB友好的界面和丰富、实用、高效的指令及模块,可以使人较快地认识、理解图像处理的相关概念,逐步掌握图像信号处理的基本方法,进而能够解决相关的工程和科研中的问题。

图像是人类获取和交换信息的主要来源,因此,图像处理的应用领域必然

2

第1章 引言

涉及到人类生活和工作的方方面面。随着人类活动范围的不断扩大,图像处理的应用领域也将随之不断扩大,数字图像处理对人类的作用将是不可限量[3]。

1.3 课题研究思路

本文首先通过对MATLAB软件的了解及应用,基于MATLAB的数字图像处理环境和如何利用MATLAB及其图像处理工具箱进行数字图像处理。主要论述了利用MATLAB实现对图像读取、阀值处理、距心的求取等图像处理。

3

第2章 数字图像处理简介

2.1 图像数字化过程

图像的数字化过程就是在计算机内生成一个二维矩阵的过程。数字化的目的是将一幅图像以数字的形式进行表示,并且要做到既不失真又便于计算机进行处理。图像的数字化要求是要达到以最小的数据量不失真地描述图像信息。数字图像(digital imagine)和传统的图像即模拟图像(picture)是有差别的。

图像的数字化包括采样和量化两个过程。 1.采样

采样(sampling)就是把在时间上和空间上连续的图像分割成离散点(采样点,即像素)的集合的一种操作。

采样是对图像空间坐标的离散化,它决定了图像的空间分辨率。采样越细,越能精确地表现图像。

图像基本上是在二维平面上连续分布的信息形式要把它输入到计算机中,首先要把二维信号变成一维信号,因此要进行扫描(scanning)。最常用的扫描方法是在二维平面上按一定间隔顺序地从上方顺序地沿水平方向的直线(扫描线)扫描,从而取出浓淡值(灰度值)的线扫描(Laster扫描)。对于由此得到的一维信号,通过求出每一特定间隔的值,可以得到离散的信号。对于运动图像除进行水平,垂直两个方向的扫描以外,还有进行时间轴上的扫描。

通过采样,如设横向的像素数为M,纵向的像素数为N,则画面的大小可以表示为“M*N”个像素。

一般来说,图像中细节越多,采样的间隔应当越小。 2.量化

如果把这些连续变化的值(灰度值)量化为8bit,则灰度值被分成0-2552的256个级别,分别对应于各个灰度值的浓淡程度,叫做灰度等级或灰度标度。经过采样,图像被分解成在时间上和空间上离散分布的像素,但是像素的值(灰度值)还是连续值。像素的值,是指白色-灰色-黑色的浓淡值,有时候也指光的

4

第2章 数字图像处理简介

强度(亮度)值或灰度值。把这些连续的浓淡值或灰度值变为离散的值(整数值)的操作就是量化。

在0-255的值对应于白-黑的时候,有以0为白,255为黑的方法,也有以0255为白的方法,为黑,这取决于图像的输入方法以及用什么样的观点对图像进行处理等,这是在编程时应特别注意的问题。但在只有黑白二值的二值图像的情形,一般设0为白,1为黑[4]。

量化的方法有:

(1) 分层量化(Hierarchical quantization) (2) 均匀量化(Uniform quantization) (3) 非均匀量化(Non-uniform quantization)

分层量化是把每一个离散样本的连续灰度值分成有限多的层次。均匀量化是把源图像灰度层次从最暗至最亮均匀分为有限层次,如果采用不均匀分层就是非均匀量化。

对连续的灰度值赋予量化级的,即灰度值方法有:等间隔量化(Equal interval quantization)和非等间隔量化(Non equal interval quantization)。等间隔量化是简单地把采样值的灰度范围等间隔地分割并进行量化。非均匀量化是依据一幅图像具体的灰度值分布的概率密度函数,按总的量化误差的最小的原则来进行量化。实用中一般采用等间隔量化[5]。

3. 采样、量化和图像细节的关系

上面的数字化过程,需要确定数值N和灰度级的级数K。在数字图像处理中,一般都取成2的整数幂,即:

N?2n (2-1)

K?2m (2-2)

一幅数字图像在计算机中所占的二进制存储位数b为:

b?log(2m)N*N?N*N*m(bit) (2-3)

512的一幅数字图像,需要大约210万例如,灰度级为256级(m=8)的512×

个存储位。随着N和m的增加,计算机所需要的存储量也随之迅速增加。

5

由于数字图像是连续图像的近似,从图像数字化的过程可以看到。这种近似的程度主要取决于采样样本的大小和数量(N值)以及量化的级数K(或m值)。N和K的值越大,图像越清晰[6]。

2.2 数字图像处理的基本内容

2.2.1 基本概念

数字图像处理(Digital Image Processing)是通过计算机对图像进行去除噪声、增强、复原、分割、提取特征等处理的方法和技术。相对于以往的数字图像处理方法,数字图像处理是一次新的“工业革命”,它彻底改变了以往人们处理图像时所采用的手段,成为图像处理中一个崭新的方向。

数字图像处理的产生和迅速发展主要受三个因素的影响:一是计算机的发展;二是数学的发展(特别是离散数学理论的创立和完善);三是广泛的农牧业、林业、环境、军事、工业和医学等方面的应用需求的增长[7]。 2.2.2 数字图像处理的主要内容

从系统整体研究的角度来看,数字图像处理的研究内容主要包括以下几个方面:图像的获取、表示与表现,图像增强、图像复原、图像分割、图像分析、图像重建及图像编码压缩等。其中,数字图像处理包括:算术/逻辑操作和几何运算、图像增强、图像分割、图像形态学处理、模式识别、图像复原、图像压缩等内容。

(1)算术/逻辑操作

图像中的算术/逻辑操作主要以像素对像素为基础在两幅或多幅图像间进行(其中不包含逻辑非操作,它在单一影像中进行)。

对图像的逻辑操作同样也是基于像素的。“与或非”这三种逻辑算子完全是函数化的。当我们对灰度级图像进行逻辑操作时,像素值作为一个二进制的字符串来处理。

在四种算术操作中,减法与加法在图像处理中最有用。我们简单的把两幅图像想除看成是用一副的取反图像与另一幅图像相乘。在四种代数运算操作中加法运算可用于降低图像中加性随机噪声的污染;减法运算则可以检测图像中

6


基于MATLAB的图像处理及跟踪算法(2).doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:《计算机组成原理》课程习题答案_秦磊华2011-9-8

相关阅读
本类排行
× 注册会员免费下载(下载后可以自由复制和排版)

马上注册会员

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: