第2章 数字图像处理简介
物体的运动变化;乘法运算可用于标记图像中的感兴趣区域;除法运算则经常用于多光谱遥感图像的分析处理,以扩大不同物体之间的差异。
(2)几何变换
几何运算用于改变图像中像素与像素之间的空间位置关系,从而改变图像的空间结构,达到处理图像的目的。简单而言,图像几何变换就是建立一种源图像像素与变换后的图像像素之间的映射关系。主要包括图像的平移、缩放、旋转、镜像和转置变换等。
(3)图像增强
图像增强是图像处理最关键的研究问题之一,图像增强按作用域可分为两类,即空域处理和频域处理。空域处理是直接对图像进行处理,而频域处理则是在图像的某个变化域内,对图像的变换系数进行运算,然后通过逆变换获得图像增强效果。图像增强可以突出图像中的某些“有用”信息,扩大图像中不同物体特征之间的差别,改善图像的视觉效果。图像增强的算法包括直方图增强,空域滤波增强,频域滤波增强和彩色增强等。
(4)图像分割
图像分割将图像细分为构成它的子区域或对象。图像分割算法一般基于亮度值的两个基本特性之一:不连续性和相似性。第一类方法基于亮度的不连续变化分割图像,比如图像的边缘。第二类方法依据事先制定的准则将图像分割为相似的区域。图像分割包括间断检测,边缘检测,门限处理等。
(5)图像形态学处理
图像形态学由一组形态学代数算子组成,最基本的形态学代数算子包括腐蚀、膨胀、开运算、闭运算等,通过组合应用这些算子,可以实现对图像形状、结构的分析和处理。数学形态学可以完成图像分割、特征提取、边界检测、图像滤波、图像增强和恢复等工作。
(6)模式识别
模式识别总是从大量信息和数据出发,在一定的经验和认识基础上,利用计算机和数学的推理的方法对信息进行自动识别。模式识别系统一般包括4个部分,即数据获取、预处理、特征提取和决策分类。
(7)图像复原(恢复)
7
由于设备造成的扫描线漏失、错位等各种原因不可避免造成图像质量的下降(退化)。图像的复原就是根据事先建立起来的系统退化模型,将降质了的图像重建成接近于或完全无退化的原始理想图像的过程。
(8)图像压缩
数字图像的数据量是很巨大的,然而数字图像实际上又具有很大的压缩潜力。图像压缩所解决的问题是尽量减少表示数字图像时所需的数据量。减少数据量的基本原理是出去其中的冗余数据。这种变换在图像存储或传输之前进行。在以后的某个时候,再对压缩图像进行解压缩,以重构原图像或原图像的近似图像[8]。
2.3 数字图像处理的特点和应用
2.3.1 数字图像处理的特点
(1) 数字图像处理的信息大多是二维信息,处理信息量很大。因此对计算机的计算速度、存储容量等要求较高。
(2) 数字图像处理占用的频带较宽。与语言信息相比,占用的频带要打几个数量级。
(3) 数字图像中各个像素是不独立的,其相关性大。在图像画面上,经常有很多像素有相同或接近的灰度。
(4) 由于图像是三维景物的二维投影,一幅图像本身不具备复现三维景物的全部几何信息的能力,很显然三维景物背后部分信息在二维图像画面上是反应不出来的。因此,要分析和理解三维景物必须做合适的假定或附加新的测量。
(5) 数字图像处理后的图像一般是给人观察和评价的,因此受人的因素影响较大。
2.3.2 数字图像处理的应用
计算机图像处理和计算机、多媒体、智能机器人、专家系统等技术的发展紧密相关。近年来计算机识别、理解图像的技术发展很快,也就是图像处理的目的除了直接供人观看(如医学图像是为医生观看作诊断)外,还进一步发展
8
第2章 数字图像处理简介
了与计算机视觉有关的应用,如邮件自动分检,车辆自动驾驶等。下面仅罗列了一些典型应用实例,而实际应用更广。
(1)在生物医学中的应用
主要包括显微图像处理;DNA显示分析;红、白血球分析计数;虫卵及组织切片的分析;癌细胞的识别;染色体分析等等。
(2)遥感航天中的应用
军事侦察、定位、导航、指挥等应用;多光谱卫星图像分析;地形、地图、国土普查;地质、矿藏勘探;天文、太空星体的探测及分析等。
(3)工业应用
CAD 和CAM技术用于模具、零件制造、服装、印染业;零件、产品无损检测,焊缝及内部缺陷检查;交通管制、机场监控;火车车皮识别等。
(4)军事公安领域中的应用
巡航导弹地形识别;指纹自动识别;警戒系统及自动火炮控制;反伪装侦察;手迹、人像、印章的鉴定识别;过期档案文字的复原;集装箱的不开箱检查等。
(5)遥感上的应用
在遥感的发展中,可以看到大量与图像处理密切相关的技术。如在20世纪70年代美国发射的第一颗陆地卫星就是通过对获取的遥感图片进行处理后达到上述目的的。随后美国发射了海洋卫星、气象卫星和军用卫星,从而获取了大量遥感资料。此图像处理广泛应用于土地测绘、资源调查、气象监测、环境污染监测、森林防护等。
(6)其他应用
图像的远距离通信;多媒体计算机系统及应用;电视电话;服装试穿显示;理发发型预测显示;电视会议;办公自动化、现场视频管理等[9]。
2.4 数字图像类型
MATLAB中,一幅图像可能包含一个数据矩阵,也可能包含一个颜色映射表矩阵。MATLAB中有四种基本的图像类型:
9
(1)二值图像(二进制图像)
二值图像也叫黑白图像,就是图像像素只存在0、1两个值。一个二值图像1表示白。 是纯黑白的。每一个像素值将取0或者1中的一个值,通常0表示黑,
二值图像可以保存为双精度或uint8类型的双精度数组,显然使用uint8类型更节省空间。在图像处理工具箱中,任何一个返回二进制图像的函数都是以uint8类型逻辑数组来返回的。
(2)灰度图像
在MATLAB中,灰度图像是保存在一个矩阵中的,矩阵中的每一个元素代表一个像素点。矩阵可以是双精度类型,其值域为[0,1];也可以为uint8类型,其数据范围为[0,255]。矩阵的每个元素代表不同的亮度或灰度级。
彩色图像转化为灰度图像公式:
Y?0.299R?0.578G?0.144B (2-4) (3)索引图像
索引图像包括图像矩阵与颜色图数组,其中,颜色图是按图像中颜色值进行排序后的数组。对于每个像素,图像矩阵包含一个值,这个值就是颜色图中的索引。颜色图为m*3双精度值矩阵,各行分别指定红绿蓝(RGB)单色值。Colormap=[R,G, B],R,G,B为值域为[0,1]的实数值。
图像矩阵与颜色图的关系依赖于图像矩阵是双精度型还是uint8(无符号8位整型)类型。如果图像矩阵为双精度类型,第一点的值对应于颜色图的第一行,第二点对应于颜色图的第二行,依次类推。如果图像矩阵是uint8,有一个偏移量,第0点值对应于颜色图的第一行,第一点对应于第二行,依次类推;uint8长用于图形文件格式,它支持256色。
(4)RGB图像
与索引图像一样,RGB图像分别用红,绿,蓝三个亮度值为一组,代表每个像素的颜色。与索引图像不同的是,这些亮度值直接存在图像数组中,而不是存放在颜色图中。图像数组为M*N*3,M,N表示图像像素的行列数[10]。
10
第2章 数字图像处理简介
2.5 主要图像文件格式
(1) JPEG(Joint Photographic Experts Group)格式,是一种成为联合图像专家组的图像压缩格式。文件后缀名为“.jpeg”或“.jpg”,是最常用的图像文件格式。JPEG是一种有损压缩格式,能够将图像压缩在很小的存储空间内。
(2) TIFF(Tagged Image File Format)格式。它是目前图像文件格式中最复杂的一种。处理1,4,8,24位非压缩图像,1,4,8,24位packbit压缩图像,一位CCITT压缩图像等。且它支持单色到32位真彩色模式的所有图像。文件内容包括:文件头,参数指针表与参数域,参数数据表和图像数据四部分。
(3) BMP(Windows Bitmap)格式。它是一种与硬件设备无关的图像文件格4,8,24位非压缩图像,8位RLE式,使用非常广。有1,(Run-length Encoded )图像。文件内容包括:文件头(一个BITMAP FILEHEADER数据结构),位图 信息数据块(位图信息头BITMAP INFOHEADER和一个颜色表)和图像数据。
(4) GIF(Graphics Interchange Format)格式。原义是“图像互换格式”,是CompuServe公司在 1987年开发的图像文件格式。GIF文件的数据,是一种基于LZW算法的连续色调的无损压缩格式。其压缩率一般在50%左右,它不属于任何应用程序。目前几乎所有相关软件都支持它,公共领域有大量的软件在使用GIF图像文件。GIF图像文件的数据是经过压缩的,而且是采用了可变长度等压缩算法。GIF格式的另一个特点是其在一个GIF文件中可以存多幅彩色图像,如果把存于一个文件中的多幅图像数据逐幅读出并显示到屏幕上,就可构成一种最简单的动画。
(5) PCX(Windows Paintbrush)格式。它是最早使用的图像文件格式之一。PCX格式支持256种颜色,不如TIFF等格式功能强,但结构比较简单,存取速度快,压缩比适中,适用于一般软件的使用。可处理1,4,8,16,24位等图 像数据。文件内容包括:文件头(128字节),图像数据、扩展颜色映射表数据。
(6) HDF(Hierarchical Data Format)格式。有8位、24位光栅数据集。 (7) PNG(Portable Network Graphics):包括1位、2位、4位、8位和16位灰度图像,8位和16位索引图像,24位和48位真彩色图像。
(8) RAS(Sun Raster image): 有1位bitmap、8位索引、24位真彩色和带有透明度的32位真彩色。
11