线制传输方式,工作时需提供24V直流电源。流量范围:0~1.2m3/h;精度:1.0%;输出:4~20mADC。
(三)执行机构
1.电动调节阀
采用智能直行程电动调节阀,用来对控制回路的流量进行调节。电动调节阀型号为:QSTP-16K。具有精度高、技术先进、体积小、重量轻、推动力大、功能强、控制单元与电动执行机构一体化、可靠性高、操作方便等优点,电源为单相220V,控制信号为4~20mADC或1~5VDC,输出为4~20mADC的阀位信号,使用和校正非常方便。
2.水泵
本装置采用磁力驱动泵,型号为16CQ-8P,流量为30升/分,扬程为8米,功率为180W。泵体完全采用不锈钢材料,以防止生锈,使用寿命长。本装置采用两只磁力驱动泵,一只为三相380V恒压驱动,另一只为三相变频220V输出驱动。
3.电磁阀
在本装置中作为电动调节阀的旁路,起到阶跃干扰的作用。电磁阀型号为:2W-160-25 ;工作压力:最小压力为0Kg/㎝2,最大压力为7Kg/㎝2 ;工作温度:-5~80℃;工作电压:24VDC。
4.三相电加热管
由三根1.5KW电加热管星形连接而成,用来对锅炉内胆内的水进行加温,每根加热管的电阻值约为50Ω左右。
二、THSA-1型过控综合自动化控制系统实验平台
“THSA-1型过控综合自动化控制系统实验平台”主要由控制屏组件、智能仪表控制组件、远程数据采集控制组件、DCS分布式控制组件、PLC控制组件等几部分组成。
(一)控制屏组件
1.SA-01电源控制屏面板
充分考虑人身安全保护,装有漏电保护空气开关、电压型漏电保护器、电流型漏电保护器。图2-2为电源控制屏示意图。接上三相四线电源控制屏两侧的插座均带电,合上总电源空气开关及钥匙开关,此时三只电压表均指示380V左右,定时器兼报警记录仪数显亮,停止按钮灯亮,照明灯亮、此时打开24V开关电源即可提供24V电。按下启动按钮,停止按钮灯熄,启动按钮灯亮,此时合上三相电源、单相Ⅰ、单相Ⅱ、单相Ⅲ空气开关即可提供相应电源输出,作为其他组件的供电电源。 2.SA-02 I/O信号接口面板
该面板的作用主要是通过航空插头(一端与对象系统连接)将各传感器检测信号及执行器控制信号同面板上自锁紧插孔相连,便于学生自行连线组成不同的控制系统。
图2-2 电源控制屏示意图
3.SA-11交流变频控制挂件
SA-11交流变频控制挂件如图2-3所示,采用日本三菱公司的FR-S520SE-0.4K-CHR)型变频器,控制信号输入为4~20mADC或0~5VDC,交流220V变频输出用来驱动三相磁力驱动泵。有关变频器的使用请参考变频器使用手册中相关的内容。变频器常用参数设置:P30=1;P53=1;P62=4;P79=0。
图2-3 SA-11交流变频控制挂件
4.三相移相SCR调压装置、位式控制接触器
采用三相可控硅移相触发装置,输入控制信号为4~20mA标准电流信号,其移相触发角与输入控制电流成正比。输出交流电压用来控制电加热器的端电压,从而实现锅炉温度的连续控制。位式控制接触器和AI-708仪表一起使用,通过AI-708仪表输出继电器触点的通断来控制交流接触器的通断,从而完成锅炉水温的位式控制实验。
(二)智能仪表控制组件
1.AI智能调节仪表挂件
采用上海万迅仪表有限公司生产的AI系列全通用人工智能调节仪表,其中SA-12智能
调节仪控制挂件为AI-818型,如图2-4所示。SA-13智能位式调节仪为AI-708型。AI-818型仪表为PID控制型,输出为4~20mADC信号;而AI-708型仪表为位式控制型,输出为继电器触点型开关量信号。AI系列仪表通过RS485串口通信协议与上位计算机通讯,从而实现系统的实时监控。
图2-4 SA-12智能调节仪控制挂件
AI仪表常用参数设置:
:控制方式。
=0,采用位式控制;
=1,采用AI人工智能调节/PID调节;
=2,启动自整定参数功能; =3,自整定结束。
:输入规格。=21,Pt100热电阻输入;=32,0.2~1VDC。 电压输入;=33,1~5VDC电压输入。
DIL:输入下限显示值,一般DIL=0;热电阻输入不用设置此项。
DIH:输入上限显示值。输入为液位信号时,DIH=50.0;输入为流量信号时,DIH=20.0;热电阻输入不用设置此项。
OP1:输出方式,一般OP1=4为4~20mA线性电流输出。
CF:系统功能选择。CF=0为内部给定,反作用调节;CF=1为内部给定,正作用调节;CF=8为外部给定,反作用调节;CF=9为外部给定,正作用调节。
:通讯地址。单回路实验
闭环实验主控为相同。
P、I、D参数可根据实验需要调整,其他参数请参考默认设置。有关AI系列仪表的使用请参考说明书上相关的内容。
=1,副控为
=1;串级实验主控为=2,内环为
=1,副控为
=2;三
=3。实验中各仪表通讯地址不允许
(三)远程数据采集控制组件
远程数据采集控制即我们通常所说的直接数字控制(DDC),它的特点是以计算机代替模拟调节器进行控制,并通过数据采集板卡或模块进行A/D、D/A转换,控制算法全部在计算
机上实现。在本装置中远程数据采集控制系统包括SA-21远程数据采集热电阻输入模块挂件、SA-22远程数据采集模拟量输入模块挂件、SA-23远程数据采集模拟量输出模块挂件。如图2-5所示。
图2-5远程数据采集控制组件
其中R-8017是8路模拟量输入模块,R-8024是4路模拟量输出模块, R-8033是3路热电阻输入模块。RemoDAQ8000系列智能采集模块通过RS485等串行口通讯协议与PC相连,由PC中的算法及程序控制并实现数据采集模块对现场的模拟量、开关量信号的输入和输出、脉冲信号的计数和测量脉冲频率等功能。图2-6所示即为远程数据采集控制系统框图。图中输入输出通道即为RemoDAQ8000智能采集模块。关于RemoDAQ8000智能模块的具体使用请参考装置附带的光盘中的相关内容。
图2-6远程数据采集系统框图
三、软件介绍
本装置中智能仪表控制方案、远程数据采集控制方案和S7-200PLC控制方案均采用了
北京昆仑公司的MCGS组态软件作为上位机监控组态软件。MCGS(Monitor and Control Generated System)是一套基于Windows平台的,用于快速构造和生成上位机监控系统的组态软件系统,可运行于Microsoft Windows95/98/NT/2000/XP等操作系统。
MCGS 软件为用户提供了解决实际工程问题的完整方案和开发平台,能够完成现场数据采集、实时和历史数据处理、报警和安全机制、流程控制、动画显示、趋势曲线和报表输出以及企业监控网络等功能。
有关MCGS软件的使用,参考配套的手册及光盘。
四、实验要求及安全操作规程
(一)实验前的准备
实验前应复习教科书有关章节,认真研读实验指导书,了解实验目的、项目、方法与步骤,明确实验过程中应注意的问题,并按实验项目准备记录等。
实验前应了解实验装置中的对象、水泵、变频器和所用控制组件的名称、作用及其所在位置, 以便于在实验中对它们进行操作和观察。熟悉实验装置面板图,要求做到:由面板上的图形、文字符号能准确找到该设备的实际位置。熟悉工艺管道结构、每个手动阀门的位置及其作用。
认真作好实验前的准备工作,对于培养学生独立工作能力,提高实验质量和保护实验设备都是很重要的。
(二)实验过程的基本要求
1.明确实验任务; 2.提出实验方案; 3.画实验接线图;
4.进行实验操作,做好观测和记录; 5.整理实验数据,得出结论,撰写实验报告。
在操作实验时,上述要求应尽量让学生独立完成,老师给予必要的指导,以培养学生的实际动手能力,要做好各主题实验,就应做到:实验前有准备;实验中有条理,实验后有分析。
(三)实验安全操作规程
1.实验之前确保所有电源开关均处于“关”的位置。
2.接线或拆线必须在切断电源的情况下进行,接线时要注意电源极性。完成接线后,正式投入运行之前,应严格检查安装、接线是否正确,并请指导老师确认无误后,方能通电。
3.在投运之前,请先检查管道及阀门是否已按实验指导书的要求打开,储水箱中是否充水至三分之二以上,以保证磁力驱动泵中充满水,磁力驱动泵无水空转易造成水泵损坏。
4.在进行温度实验前,请先检查锅炉内胆内水位,至少保证水位超过液位指示玻璃管上面的红线位置,以免造成实验失败。
5.实验之前应进行变送器零位和量程的调整,调整时应注意电位器的调节方向,并分清调零电位器和满量程电位器。
6.仪表应通电预热15分钟后再进行校验。 7.小心操作,切勿乱扳硬拧,严防损坏仪表。 8.严格遵守实验室有关规定。