19.(1)证明:设l:y??ab(x?c),
a?y??(x?c)2?aab?b由方程组?得P(,),
bcc?y?x?a?∵|OA|,|OB|,|OF|成等比数列,∴A(a2c22????????????abaabbab∴PA?(0,?),OP?(,),FP?(?,),
ccccc2222????????????????????????????????abab∴PA?OP??2,PA?FP??2,∴PA?OP?PA?FB.
cc(2)设D(x1,y1),E(x2,y2),
,0),
a?y??(x?c)4442?a2acac?b2222由?2得(b?2)x?x?(2?ab)?0, 22bbb?x?y?122?b?a42ab22?(2?ab)c?0,∴b2?a2,即c2?2a2,∴e?∵x1?x2?0,∴4a2b?2b2.
20、 (1)y?2x?1(x?1), (2)y??2223x
21、(1) arctan
41717,(3)
322,22、(1)y??4(m?1)(x?m), (2) m?(1, 23?42)。