(3)饱和漏极电流IDSS:IDSS是耗尽型FET的参数,当UGS=0时所对应的漏极电流。 (4)直流输入电阻RGS(DC):FET的栅源输入电阻。对于JFET,反偏时RGS约大于107
Ω;对于MOSFET,RGS约是109~1015Ω。 交流参数
(1)低频跨导gm:低频跨导反映了栅压对漏极电流的控制作用,这一点与电子管的控制作用十分相像。gm可以在转移特性曲线上求取,单位是mS(毫西门子)。
(2)级间电容:FET的三个电极间均存在极间电容。通常Cgs和Cgd约为1~3pF,而Cds
约为0.1~1pF。在高频电路中,应考虑极间电容的影响。极限参数
(1)最大漏极电流IDM:是FET正常工作时漏极电流的上限值。
(2)漏--源击穿电压U(BR)DS:FET进入恒流区后,使iD骤然增大的uDS值称为漏—源击穿电压,uDS超过此值会使管子烧坏。
(3)最大耗散功率PDM:可由PDM= VDS ID决定,与双极型三极管的PCM相当。 8、场效应管FET与晶体管BJT的比较
1) FET是另一种半导体器件,在FET中只是多子参与导电,故称为单极型三极管;而普通三极管参与导电的既有多数载流子,也有少数载流子,故称为双极型三极管(BJT)。由于少数载流子的浓度易受温度影响,因此,在温度稳定性、低噪声等方面FET优于BJT。
2) BJT是电流控制器件,通过控制基极电流达到控制输出电流的目的。因此,基极总有一定的电流,故BJT的输入电阻较低;FET是电压控制器件,其输出电流取决于栅源间的
914
电压,栅极几乎不取用电流,因此,FET的输入电阻很高,可以达到10~10Ω。高输入电阻是FET的突出优点。
3) FET的漏极和源极可以互换使用,耗尽型MOS管的栅极电压可正可负,因而FET放大电路的构成比BJT放大电路灵活。
4) FET 和BJT都可以用于放大或作可控开关。但FET还可以作为压控电阻使用,可以在微电流、低电压条件下工作,且便于集成。在大规模和超大规模集成电路中应用极为广泛。
本章小节
本章首先介绍了半导体的基础知识,然后阐述了半导体二极管、晶体管(BJT)和场效应管(FET)的工作原理、特性曲线和主要参数。现将各部分归纳如下: 1、杂质半导体与PN结
本征半导体中掺入不同的杂质就形成N型半导体和P型半导体,控制掺入杂质的多少就可以有效地改变其导电性能,从而实现导电性能的可控性。半导体中有两种载流子:自由电子与空穴。载流子有两种有序运动:因浓度差异而产生的运动称为扩散运动,因电位差而产生的运动称为漂移运动。将两种杂质半导体制作在同一块硅片(或锗片)上,在它们的交界面处,上述两种运动达到动态平衡,从而形成PN结。正确理解PN结单向导电性、反向击穿特性、温度特性和电容效应,有利于了解半导体二极管、晶体管和场效应管等电子器件的特性和参数。 2、半导体二极管
一个PN结经封装并引出电极后就构成二极管。二极管加正向电压时,产生扩散电流,电流与电压成指数关系;加反向电压时,产生漂移电流,其数值很小,体现出单向导电性。
IF、IR、UR和fM是二极管的主要参数。
特殊二极管与普通二极管一样,具有单向导电性。利用PN结击穿时的特性可制成稳压二极管,利用发光材料可制成发光二极管,利用PN结的光敏性可制成光电二极管。 3、晶体管
晶体管具有电流放大作用。当发射结正向偏置而集电结反向偏置时,从发射区注入到基区的非平衡少子中仅有很少部分与基区的多子复合,形成基极电流,而大部分在集电结外电