¡¶¼ÆËã»úÊýѧ»ù´¡¡·(Ò»)¨D¨DÀëÉ¢ÊýѧÆÚÄ©¸´Ï°²Î¿¼
M
R S
1 0 0
001
0
0 0
(2) E(0,0,1) (0 0 1) 0 1 (1 1) 0 1 1
E(a,b,c) (a b c) b c
µÄ¶ÔżʽΪ(a b c) b c£¬
ÆäÕæÖµÊÇ(0 0 1) 0 1 1 0 1 0
15. xµÄϽÓòΪ£ºF(x) G(x£¬z) P(x) xµÄϽÓòΪ£ºH(x£¬y) x¼ÈÊÇÔ¼Êø±äÔª£¬Ò²ÊÇ×ÔÓɱäÔª£¬Ô¼Êø³öÏÖ4´Î£¬×ÔÓɳöÏÖ1´Î£®yÊÇ×ÔÓɱäÔª£¬×ÔÓɳöÏÖ1´Î£®. zÊÇ×ÔÓɱäÔª£¬×ÔÓɳöÏÖ1´Î£®
x y(Q(f(x),y))) xP(x)
( yQ(f(2),y)) ( yQ(f(3),y)) P(2) P(3))
(Q(3,2) Q(3,3)) (Q(2,2) Q(2,3)) 0 1
(0 1) (0 1) 1 1
16. ×ö·¨ÈçÏ£º
¢ÙÑ¡±ß1£» ¢ÚÑ¡±ß2£»
¢ÛÑ¡±ß3£» ¢ÜÑ¡±ß5£» ¢ÝÑ¡±ß7
×îСÉú³ÉÊ÷Ϊ{1,2,3,5,7}£®Èçͼ4 ÖдÖÏßËùʾ£®
ȨÊýΪ18£® ͼ4 17. ÉèͼGÓÐx¸ö½áµã£¬ÓÐÎÕÊÖ¶¨Àí
2 1+2 2+3 4£«3 £¨x 2 2 3£© 12 2
3x 24 21 18 27 x 9
ͼGÖÁÉÙÓÐ9¸ö½áµã£® ͼ£µ Âú×ãÌõ¼þµÄͼÈçͼ5Ëùʾ£® Îå¡¢Ö¤Ã÷Ìâ
18. ¢Ù x A, x,x R, x,x S x,x R S£¬ËùÒÔR SÓÐ×Ô·´ÐÔ£» ¢Ú x,y A,ÒòΪR£¬SÊǶԳƵģ¬
x,y R S x,y R x,y S
R,S¶Ô³ÆµÄ
y,x R y,x S
y,x R S
ËùÒÔ£¬R SÊǶԳƵģ®
¢Û x,y,z A£¬ÒòΪR£¬SÊÇ´«µÝµÄ£¬
x,y R S y,z R S
x,y R x,y S y,z R y,z S x,y R y,z R x,y S y,z S
R,S´«µÝ
x,z R x,z S x,z R S ËùÒÔ£¬R SÊÇ´«µÝµÄ£® ×ÜÖ®£¬R SÊǵȼ۹ØÏµ.
19. Ê×ÏÈÖ¤*ÔÚSÉÏ·â±Õ£®ÈÎÈ¡SÖеÄÔªËØ
a 0
0 ,b
x 0
0 * £¬ÆäÖÐa,b,x,y R£® y