《高等代数》课程简介
一、课程概述
《高等代数》是高等院校数学专业的一门重要的基础课,其主要任务是使学生获得数学的基本思想方法和多项式理论、行列式、线性方程组、矩阵论、向量空间、线性变换、欧氏空间和酉空间、二次型、群,环和域简介等方面的系统知识。它一方面为后继课程(如近世代数、数论、离散数学、计算方法、微分方程、泛函分析)提供一些所需的基础理论和知识。尤其在本世纪,计算机技术、通讯信息技术和现代生物工程技术已成为最热门的学科领域,这些学科均需要代数学的发展。《高等代数》是中学代数的继续和提高。通过这一课程的教学,应使学生掌握为进一步提高专业知识水平所必需的代数基础理论和基本方法,且对初等代数内容有比较深入的了解,并能居高临下地处理中学数学的有关教材,培养学生独立思考、科学抽象思维、正确的逻辑推断能力和迅速准确的运算能力,对开发学生智能、加强“三基”(基础知识、基本理论、基本理论)及培养学生创造能力、树立辩证唯物论观点等有重要的作用。
二、本课程的教学目的及要求
1、使学生掌握多项式理论、线性代数理论的基础知识和基本理论,着重培养学生解决问题的基本技能。
2、使学生熟悉和掌握本课程所涉及的现代数学中的重要思想方法,提高其抽象思维、逻辑推理和代数运算的能力。
3、使学生进一步掌握具体与抽象、特殊与一般、有限与无限等辩证关系,培养其辩证唯物主义观点。
4、逐步培养学生的对知识的发现和创新的能力,训练其对特殊实例(正例和反例)的观察、分析、归纳、综合、抽象概括和探索性推理的能力。