3 7.(2018·黄山一模)已知f (x )=13
x 3+3xf ′(0),则f ′(1)=1. [解析] 根据题意,f (x )=13
x 3+3xf ′(0), 则其导数f ′(x )=x 2
+3f ′(0),
令x =0可得:f ′(0)=3f ′(0),解可得f ′(0)=0,
则f ′(x )=x 2,
则有f ′(1)=1,
故答案为1.
8.(2018·天津文,10)已知函数f (x )=e x ln x ,f ′(x )为f (x )的导函数,则f ′(1)的值为e .
[解析] ∵ f (x )=e x ln x ,
∴ f ′(x )=e x ln x +e x x
, ∴ f ′(1)=e .
三、解答题
9.求下列函数的导数:
(1)y =x (x 2+1x +1x 3);(2)y =(x +1)(1x
-1); (3)y =sin 4x 4+cos 4x 4;(4)y =1+x 1-x +1-x 1+x
. [解析] (1)∵y =x ? ????x 2+1x +1x 3=x 3+1+1x
2, ∴y ′=3x 2-2x
3. (2)∵y =(x +1)? ??
??1x -1=-x 12+x -12, ∴y ′=-12x -12-12x -32=-12x ?
????1+1x . (3)∵y =sin 4x 4+cos 4x
4 =? ????sin 2x 4+cos 2x 42-2sin 2x 4cos 2x
4 =1-12sin 2x 2=1-12·1-cos x 2=34+14
cos x , ∴y ′=-14
sin x .