数学是研究空间形式和数量关系的科学。数学能够处理数据、观测资料,进行计算、推理和证明,可提供自然现象、社会系统的数学模型。随着社会的发展,数学的应用越来越广泛。它是人们参加社会生活、从事生产劳动和学习、研究现代科学技术的基础;它在培养和提高思维能力方面发挥着特有的作用;它的内容、思想、方法和语言已成为现代文化的重要组成部分。
概念;了解三垂线定理及其逆定理。
(4)了解平面与平面的位置关系;掌握两个平面平行的判定定理和性质定理;掌握二面角、二面角的平面角、两个平行平面间的距离的概念;掌握两个平面垂直的判定定理和性质定理。
(5)进一步熟悉反证法,会用反证法证明简单的问题。
(6)了解多面体的概念,了解凸多面体的概念。
(7)了解棱柱的概念,掌握棱柱的性质,会画直棱柱的直观图。
(8)了解棱锥的概念,掌握正棱锥的性质,会画正棱锥的直观图。
(9)了解正多面体的概念,了解多面体的欧拉公式。
(10)了解球的概念,掌握球的性质,掌握球的表面积和体积公式。
(11)通过空间图形的各种位置关系间的教学,培养空间想象能力,发展逻辑思维能力,并培养辩证唯物主义观点。
9(B)直线、平面、简单几何体(36课时)
平面及其基本性质。平面图形直观图的画法。
平行直线。
直线和平面平行的判定与性质。直线和平面垂直的判定。三垂线定理及其逆定理。
两个平面的位置关系。
空间向量及其加法、减法与数乘。空间向量的坐标表示。空间向量的数量积。
直线的方向向量。异面直线所成的角。异面直线的公垂线。异面