水凝胶在体外微环境中的三维模型肿瘤血管生成 - 图文(6)

2019-08-03 13:23

肿瘤组织血管生成能力。当联合其他技术,如光刻和三维打印技术,它可以建立一个先进的带有微流体通道的仿生模型,它能作为微血管结构的示意图。进一步了解正常和癌变环境之间的差异需要能够精确的模仿在病理条件下的血管发生和血管生成。许多参数必须先确定以完全适应这些肿瘤血管生成模型,但希望建立有效的临床前模型需要排除体内模型昂贵的花费。

参考文献

[1] N.A. Howlader,M. Krapcho, J. Garshell, N. Neyman, S.F. Altekruse, C.L. Kosary, M. Yu,

J. Ruhl, Z. Tatalovich, H. Cho, A. Mariotto, D.R. Lewis, H.S. Chen, E.J. Feuer, in: C. Ka (Ed.), SEER Cancer Statistics Review, 1975–2010, National Cancer Institute,

Bethesda, MD, 2013, (pp. Based on November 2012 SEER data submission, posted to the SEER web site, April 2013).

[2] Y. Cao, R.A. DePinho, M. Ernst, K. Vousden, Cancer research: past, present and future, Nat. Rev. Cancer 11 (2011) 749–754.

[3] C.P. Carden, U. Banerji, S.B. Kaye, P. Workman, J.S. de Bono, From darkness to light with biomarkers in early clinical trials of cancer drugs, Clin. Pharmacol. Ther. 85 (2009) 131–133.

[4] R.K. Jain, Delivery of molecular and cellular medicine to solid tumors, Adv. Drug Deliv. Rev. 64 (2012) 353–365.

[5] C. Fischbach, R. Chen, T. Matsumoto, T. Schmelzle, J.S. Brugge, P.J. Polverini, D.J. Mooney, Engineering tumors with 3D scaffolds, Nat. Methods 4 (2007) 855–860. [6] S.M.Weis, D.A. Cheresh, Tumor angiogenesis:molecular pathways and therapeutic targets, Nat. Med. 17 (2011) 1359–1370.

[7] D. Wirtz, K. Konstantopoulos, P.C. Searson, The physics of cancer: the role of physical interactions and mechanical forces in metastasis, Nat. Rev. Cancer 11 (2011) 512–522.

[8] M.S. Gordon, D.S. Mendelson, G. Kato, Tumor angiogenesis and novel antiangiogenic strategies, Int. J. Cancer 126 (2010) 1777–1787.

[9] D.W. Infanger, S.P. Pathi, C. Fischbach, Microenvironmental Regulation of Tumor Angiogenesis: Biological and Engineering Considerations, 2011. 167–202.

[10] L. Rivera, M. Pandika, G. Bergers, Escape mechanisms fromantiangiogenic therapy: an immune cell's perspective, Tumor Microenvironment and Cellular Stress, Springer, 2014, pp. 83–99.

[11] N.R. Smith, D. Baker, M. Farren, A. Pommier, R. Swann, X. Wang, S. Mistry, K. McDaid, J. Kendrew, C. Womack, S.R. Wedge, S.T. Barry, Tumor stromal architecture can define the intrinsic tumor response to VEGF-targeted therapy, Clin. Cancer Res. 19 (2013) 6943–6956.

[12] L. Claesson‐Welsh, M. Welsh, VEGFA and tumour angiogenesis, J. Intern. Med. 273 (2013) 114–127.

[13] P. Carmeliet, R.K. Jain,Molecular mechanisms and clinical applications of angiogenesis, Nature 473 (2011) 298–307.

[14] S.V. Kozin, D.G. Duda, L.L. Munn, R.K. Jain, Neovascularization after irradiation: what is the source of newly formed vessels in recurring tumors? J. Natl. Cancer Inst. 104 (2012) 899–905.

[15] C.H. Lieu, A.C. Tan, S. Leong, J.R. Diamond, S.G. Eckhardt, From bench to bedside: lessons learned in translating preclinical studies in cancer drug development, J. Natl. Cancer Inst. 105 (2013) 1441–1456.

[16] W.-D.C. Beecken, A. Fernandez, A.M. Joussen, E.-G. Achilles, E. Flynn, K.-M. Lo, S.D. Gillies, K. Javaherian, J. Folkman, Y. Shing, Effect of antiangiogenic therapy on slowly growing, poorly vascularized tumors in mice, J. Natl. Cancer Inst. 93 (2001) 382–387.

[17] N.J. Nelson, Angiogenesis research is on fast forward, J. Natl. Cancer Inst. 91 (1999) 820–822.

[18] L. Hlatky, P. Hahnfeldt, J. Folkman, Clinical application of antiangiogenic therapy: microvessel density, what it does and doesn't tell us, J. Natl. Cancer Inst. 94 (2002) 883–893.

[19] E. Burdett, F.K. Kasper, A.G. Mikos, J.A. Ludwig, Engineering tumors: a tissue engineering perspective in cancer biology, Tissue Eng. B Rev. 16 (2010) 351–359. [20] L.E. Dickinson, C. Lütgebaucks, D.M. Lewis, S. Gerecht, Patterning microscale extracellular matrices to study endothelial and cancer cell interactions in vitro, Lab Chip 12 (2012) 4244–4248.

[21] D. Hanjaya-Putra, K.T. Wong, K. Hirotsu, S. Khetan, J.A. Burdick, S. Gerecht, Spatial control of cell-mediated degradation to regulate vasculogenesis and angiogenesis in hyaluronan hydrogels, Biomaterials 33 (2012) 6123–6131.

[22] A.C. Hielscher, S. Gerecht, Engineering approaches for investigating tumor angiogenesis: exploiting the role of the extracellular matrix, Cancer Res. 72 (2012) 6089–6096.

[23] S. Kusuma, S. Zhao, S. Gerecht, The extracellular matrix is a novel attribute of endothelial progenitors and of hypoxic mature endothelial cells, FASEB J. 26 (2012) 4925–4936.

[24] Y. Liang, J. Jeong, R.J. DeVolder, C. Cha, F. Wang, Y.W. Tong, H. Kong, A cellinstructive

hydrogel to regulate malignancy of 3D tumor spheroids with matrix rigidity, Biomaterials 32 (2011) 9308–9315.

[25] D.W. Hutmacher, D. Loessner, S. Rizzi, D.L. Kaplan, D.J. Mooney, J.A. Clements, Can tissue engineering concepts advance tumor biology research? Trends Biotechnol. 28 (2010) 125–133.

[26] E. Decaup, C. Jean, C. Laurent, P. Gravelle, S. Fruchon, F. Capilla, A. Marrot, T. Al Saati,

F. Frenois, G. Laurent, Anti-tumor activity of obinutuzumab and rituximab in a follicular lymphoma 3D model, Blood Cancer J. 3 (2013) e131.

[27] C.M. Ghajar, M.J. Bissell, Tumor engineering: the other face of tissue engineering, Tissue Eng. A 16 (2010) 2153–2156.

[28] D. Loessner, S.C. Rizzi, K.S. Stok, T. Fuehrmann, B. Hollier, V. Magdolen, D.W. Hutmacher, J.A. Clements, A bioengineered 3D ovarian cancer model for the

assessment of peptidase-mediated enhancement of spheroid growth and intraperitoneal spread, Biomaterials 34 (2013) 7389–7400.

[29] M. Pickl, C. Ries, Comparison of 3D and 2D tumor models reveals enhanced HER2 activation in 3D associated with an increased response to trastuzumab, Oncogene 28 (2008) 461–468.

[30] C.S. Szot, C.F. Buchanan, J.W. Freeman, M.N. Rylander, 3D in vitro bioengineered tumors based on collagen I hydrogels, Biomaterials 32 (2011) 7905–7912. [31] M. H?kanson, E. Cukierman, M. Charnley, Miniaturized pre-clinical cancer models as research and diagnostic tools, Adv. Drug Deliv. Rev. 69–70 (2014) 52–66.

[32] B. Weigelt, C.M. Ghajar, M.J. Bissell, The need for complex 3D culture models to unravel novel pathways and identify accurate biomarkers in breast cancer, Advanced Drug Delivery Reviews 69–70 (2014) 42–51.

[33] D.R. Senger, G.E. Davis, Angiogenesis, Cold Spring Harb. Perspect. Biol. 3 (2011). [34] G. Seano, G. Chiaverina, P.A. Gagliardi, L. di Blasio, R. Sessa, F. Bussolino, L. Primo, Modeling human tumor angiogenesis in a three-dimensional culture system, Blood 121 (2013) e129–e137.

[35] H. Aubin, J.W. Nichol, C.B. Hutson, H. Bae, A.L. Sieminski, D.M. Cropek, P. Akhyari, A.

Khademhosseini, Directed 3D cell alignment and elongation in microengineered hydrogels, Biomaterials 31 (2010) 6941–6951.

[36] N.F. Huang, E.S. Lai, A.J.S. Ribeiro, S. Pan, B.L. Pruitt, G.G. Fuller, J.P. Cooke, Spatial patterning of endothelium modulates cell morphology, adhesiveness and transcriptional signature, Biomaterials 34 (2013) 2928–2937.

[37] N.F. Huang, J. Okogbaa, J.C. Lee, A. Jha, T.S. Zaitseva, M.V. Paukshto, J.S. Sun, N. Punjya, G.G. Fuller, J.P. Cooke, The modulation of endothelial cell morphology,

function, and survival using anisotropic nanofibrillar collagen scaffolds, Biomaterials 34 (2013) 4038–4047.

[38] Q. Smith, S. Gerecht, Going with the flow: microfluidic platforms in vascular tissue engineering, Curr. Opin. Chem. Eng. 3 (2014) 42–50.

[39] S.F. Barreto-Ortiz, S. Zhang, M. Davenport, J. Fradkin, B. Ginn, H.-Q. Mao, S. Gerecht, A novel in vitro model for microvasculature reveals regulation of circumferential ECM organization by curvature, PLoS ONE 8 (2013) e81061.

[40] L. Bian, M. Guvendiren, R.L. Mauck, J.A. Burdick, Hydrogels that mimic developmentally

relevant matrix and N-cadherin interactions enhance MSC chondrogenesis, Proc. Natl. Acad. Sci. 110 (2013) 10117–10122.

[41] W.L. Grayson,M. Fr?hlich, K. Yeager, S. Bhumiratana, M.E. Chan, C. Cannizzaro, L.Q. Wan, X.S. Liu, X.E. Guo, G. Vunjak-Novakovic, Engineering anatomically shaped human bone grafts, Proc. Natl. Acad. Sci. 107 (2010) 3299–3304.

[42] G. Sun, X. Zhang, Y.-I. Shen, R. Sebastian, L.E. Dickinson, K. Fox-Talbot, M. Reinblatt, C. Steenbergen, J.W. Harmon, S. Gerecht, Dextran hydrogel scaffolds enhance angiogenic responses and promote complete skin regeneration during burn wound healing, Proc. Natl. Acad. Sci. 108 (2011) 20976–20981.

[43] J.L. Drury, D.J. Mooney, Hydrogels for tissue engineering: scaffold design variables and applications, Biomaterials 24 (2003) 4337–4351.

[44] A.S. Hoffman, Hydrogels for biomedical applications, Adv. Drug Deliv. Rev. 64 (2012) 18–23.

[45] N.A. Peppas, J.Z. Hilt, A. Khademhosseini, R. Langer, Hydrogels in biology and medicine: from molecular principles to bionanotechnology, Adv. Mater. 18 (2006) 1345–1360.

[46] J.A. Burdick, G.D. Prestwich, Hyaluronic acid hydrogels for biomedical applications, Adv. Mater. 23 (2011) H41–H56.

[47] M.P. Cuchiara, D.J. Gould, M.K.McHale, M.E. Dickinson, J.L.West, Integration of selfassembled

microvascular networks with microfabricated PEG‐based hydrogels, Adv. Funct. Mater. 22 (2012) 4511–4518.

[48] D.-H.T. Nguyen, S.C. Stapleton, M.T. Yang, S.S. Cha, C.K. Choi, P.A. Galie, C.S. Chen, Biomimetic model to reconstitute angiogenic sprouting morphogenesis in vitro, Proc. Natl. Acad. Sci. 110 (2013) 6712–6717.

[49] Y. Zheng, J. Chen, M. Craven, N.W. Choi, S. Totorica, A. Diaz-Santana, P. Kermani, B. Hempstead, C. Fischbach-Teschl, J.A. López, In vitro microvessels for the study of angiogenesis and thrombosis, Proc. Natl. Acad. Sci. 109 (2012) 9342–9347.

[50] G. Bergers, L.E. Benjamin, Tumorigenesis and the angiogenic switch, Nat. Rev. Cancer 3 (2003) 401–410.

[51] A.S. Chung, J. Lee, N. Ferrara, Targeting the tumour vasculature: insights from physiological angiogenesis, Nat. Rev. Cancer 10 (2010) 505–514.

[52] A. Raza, M.J. Franklin, A.Z. Dudek, Pericytes and vessel maturation during tumor angiogenesis and metastasis, Am. J. Hematol. 85 (2010) 593–598.

[53] I. Yana, H. Sagara, S. Takaki, K. Takatsu, K. Nakamura, K. Nakao, M. Katsuki, S.-i. Taniguchi, T. Aoki, H. Sato, Crosstalk between neovessels and mural cells directs the site-specific expression of MT1-MMP to endothelial tip cells, J. Cell Sci. 120 (2007) 1607–1614.

[54] P. Lu, V.M. Weaver, Z. Werb, The extracellular matrix: a dynamic niche in cancer progression, J. Cell Biol. 196 (2012) 395–406.

[55] M. Hayashi, A. Majumdar, X. Li, J. Adler, Z. Sun, S. Vertuani, C. Hellberg, S. Mellberg, S. Koch, A. Dimberg, VE-PTP regulates VEGFR2 activity in stalk cells to establish endothelial cell polarity and lumen formation, Nat. Commun. 4 (2013) 1672. [56] P. Schedin, P.J. Keely, Mammary gland ECM remodeling, stiffness, and mechanosignaling in normal development and tumor progression, Cold Spring Harb. Perspect. Biol. 3 (2011).

[57] L.G. Daenen, Y. Shaked, S. Man, P. Xu, E.E. Voest, R.M. Hoffman, D.J. Chaplin, R.S. Kerbel, Low-dose metronomic cyclophosphamide combined with vascular disrupting therapy induces potent antitumor activity in preclinical human tumor xenograft models, Mol. Cancer Ther. 8 (2009) 2872–2881.

[58] T. Asahara, T. Takahashi, H. Masuda, C. Kalka, D. Chen, H. Iwaguro, Y. Inai, M. Silver, J.M. Isner, VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells, EMBO J. 18 (1999) 3964–3972.

[59] J.M. Butler, H. Kobayashi, S. Rafii, Instructive role of the vascular niche in promoting tumour growth and tissue repair by angiocrine factors, Nat. Rev. Cancer 10 (2010) 138–146.

[60] H. Masuda, T. Asahara, Post-natal endothelial progenitor cells for neovascularization in tissue regeneration, Cardiovasc. Res. 58 (2003) 390–398.

[61] A.Y. Liu, G. Ouyang, Tumor angiogenesis: a new source of pericytes, Curr. Biol. 23 (2013) R565–R568.

[62] M.J. Bissell, D. Radisky, Putting tumours in context, Nat. Rev. Cancer 1 (2001) 46–54.

[63] M.P. Lutolf, J.A. Hubbell, Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering, Nat. Biotechnol. 23 (2005) 47–55.

[64] E.S. Place, N.D. Evans, M.M. Stevens, Complexity in biomaterials for tissue engineering, Nat. Mater. 8 (2009) 457–470.

[65] A.J. Putnam, D.J. Mooney, Tissue engineering using synthetic extracellularmatrices, Nat. Med. 2 (1996) 824–826.

[66] M.C. Cushing, K.S. Anseth, Hydrogel cell cultures, Science 316 (2007) 1133–1134. [67] B.J. Gill, D.L. Gibbons, L.C. Roudsari, J.E. Saik, Z.H. Rizvi, J.D. Roybal, J.M. Kurie, J.L.

West, A syntheticmatrixwith independently tunable biochemistry andmechanical properties to study epithelial morphogenesis and EMT in a lung adenocarcinoma model, Cancer Res. 72 (2012) 6013–6023.

[68] D.Y. Ko, U.P. Shinde, B. Yeon, B. Jeong, Recent progress of in situ formed gels for biomedical applications, 38 (2013) 672–701.

[69] H.J. Chung, T.G. Park, Self-assembled and nanostructured hydrogels for drug delivery and tissue engineering, 4 (2009) 429–437.

[70] P. Friedl, Prespecification and plasticity: shifting mechanisms of cell migration, Curr. Opin. Cell Biol. 16 (2004) 14–23.

[71] C.G. Galbraith, M.P. Sheetz, Forces on adhesive contacts affect cell function, Curr. Opin. Cell Biol. 10 (1998) 566–571.

[72] G. Maheshwari, G. Brown, D.A. Lauffenburger, A. Wells, L.G. Griffith, Cell adhesion and motility depend on nanoscale RGD clustering, J. Cell Sci. 113 (Pt 10) (2000) 1677–1686.

[73] B. Geiger, A. Bershadsky, R. Pankov, K.M. Yamada, Transmembrane crosstalk between the extracellular matrix–cytoskeleton crosstalk, Nat. Rev. Mol. Cell Biol. 2 (2001) 793–805.

[74] H.K. Kleinman, M.L. McGarvey, L.A. Liotta, P.G. Robey, K. Tryggvason, G.R. Martin,


水凝胶在体外微环境中的三维模型肿瘤血管生成 - 图文(6).doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:电厂水处理值班员(初级)第二版理论试题库

相关阅读
本类排行
× 注册会员免费下载(下载后可以自由复制和排版)

马上注册会员

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: