Isolation and characterization of type IV procollagen, laminin, and heparan sulfate proteoglycan from the EHS sarcoma, Biochemistry 21 (1982) 6188–6193.
[75] G. Benton, H.K. Kleinman, J. George, I. Arnaoutova, Multiple uses of basement membrane-like matrix (BME/Matrigel) in vitro and in vivo with cancer cells, Int. J. Cancer 128 (2011) 1751–1757.
[76] P.A. Kenny, G.Y. Lee, C.A. Myers, R.M. Neve, J.R. Semeiks, P.T. Spellman, K. Lorenz, E.
H. Lee, M.H. Barcellos-Hoff, O.W. Petersen, J.W. Gray, M.J. Bissell, The morphologies of breast cancer cell lines in three-dimensional assays correlate with their profiles of gene expression, Mol. Oncol. 1 (2007) 84–96.
[77] I. Arnaoutova, H.K. Kleinman, In vitro angiogenesis: endothelial cell tube formation on gelled basement membrane extract, Nat. Protoc. 5 (2010) 628–635.
[78] R. Auerbach, R. Lewis, B. Shinners, L. Kubai, N. Akhtar, Angiogenesis assays: a critical overview, Clin. Chem. 49 (2003) 32–40.
[79] K.A. O'Connell, M. Edidin, A mouse lymphoid endothelial cell line immortalized by simian virus 40 binds lymphocytes and retains functional characteristics of normal endothelial cells, J. Immunol. 144 (1990) 521–525.
[80] E.W. Ades, F.J. Candal, R.A. Swerlick, V.G. George, S. Summers, D.C. Bosse, T.J. Lawley, HMEC-1: establishment of an immortalized human microvascular endothelial cell line, J. Invest. Dermatol. 99 (1992) 683–690.
[81] C.P. Khoo, K. Micklem, S.M. Watt, A comparison of methods for quantifying angiogenesis in the Matrigel assay in vitro, Tissue Eng. Part C Methods 17 (2011) 895–906.
[82] B. Chevallay, D. Herbage, Collagen-based biomaterials as 3D scaffold for cell cultures: applications for tissue engineering and, gene therapy, 38 (2000) 211–218.
[83] M.K. Gordon, R.A. Hahn, Collagens, Cell Tissue Res. 339 (2010) 247–257.
[84] M.D. Shoulders, R.T. Raines, Collagen structure and stability, Annu. Rev. Biochem. 78 (2009) 929–958.
[85] G.N. Ramachandran, Structure of collagen, Nature 177 (1956) 710–711.
[86] C.S. Szot, C.F. Buchanan, J.W. Freeman,M.N. Rylander, In vitro angiogenesis induced by tumor-endothelial cell co-culture in bilayered, collagen I hydrogel bioengineered tumors, Tissue Eng. Part C Methods 19 (2013) 864–874.
[87] M.W. Mosesson, Fibrinogen and fibrin structure and functions, J. Thromb. Haemost. 3 (2005) 1894–1904.
[88] J. Liu, Y. Tan, H. Zhang, Y. Zhang, P. Xu, J. Chen, Y.C. Poh, K. Tang, N.Wang, B. Huang,
Soft fibrin gels promote selection and growth of tumorigenic cells, Nat. Mater. 11 (2012) 734–741.
[89] D.W. Infanger, M.E. Lynch, C. Fischbach, Engineered culture models for studies of tumor–microenvironment interactions, Annu. Rev. Biomed. Eng. 15 (2013) 29–53. [90] R. Kosaki, K.Watanabe, Y. Yamaguchi, Overproduction of hyaluronan by expression of the hyaluronan synthase Has2 enhances anchorage-independent growth and tumorigenicity, Cancer Res. 59 (1999) 1141–1145.
[91] A.G. Bharadwaj, J.L. Kovar, E. Loughman, C. Elowsky, G.G. Oakley, M.A. Simpson, Spontaneous metastasis of prostate cancer is promoted by excess hyaluronan synthesis and processing, Am. J. Pathol. 174 (2009) 1027–1036.
[92] L.A. Gurski, A.K. Jha, C. Zhang, X. Jia, M.C. Farach-Carson, Hyaluronic acid-based hydrogels as 3D matrices for in vitro evaluation of chemotherapeutic drugs using poorly adherent prostate cancer cells, Biomaterials 30 (2009) 6076–6085.
[93] X. Xu, L.A. Gurski, C. Zhang, D.A. Harrington, M.C. Farach-Carson, X. Jia, Recreating the tumor microenvironment in a bilayer, hyaluronic acid hydrogel construct for the growth of prostate cancer spheroids, Biomaterials 33 (2012) 9049–9060.
[94] D. Hanjaya-Putra, V. Bose, Y.I. Shen, J. Yee, S. Khetan, K. Fox-Talbot, C. Steenbergen, J.A. Burdick, S. Gerecht, Controlled activation of morphogenesis to generate a functional human microvasculature in a synthetic matrix, Blood 118 (2011) 804–815.
[95] S. Kusuma, Y.I. Shen, D. Hanjaya-Putra, P. Mali, L. Cheng, S. Gerecht, Self-organized vascular networks from human pluripotent stem cells in a synthetic matrix, Proc. Natl. Acad. Sci. U. S. A. 110 (2013) 12601–12606.
[96] X. Yang, S.K. Sarvestani, S. Moeinzadeh, X. He, E. Jabbari, Three-dimensionalengineered
matrix to study cancer stem cells and tumorsphere formation: effect of matrix modulus, Tissue Eng. A 19 (2013) 669–684.
[97] N. Weidner, P. Carroll, J. Flax, W. Blumenfeld, J. Folkman, Tumor angiogenesis correlates with metastasis in invasive prostate carcinoma, Am. J. Pathol. 143 (1993) 401.
[98] N.Weidner, J.P. Semple, W.R. Welch, J. Folkman, Tumor angiogenesis andmetastasis— correlation in invasive breast carcinoma, N. Engl. J. Med. 324 (1991) 1–8.
[99] N. Hylton, Dynamic contrast-enhanced magnetic resonance imaging as an imaging biomarker, J. Clin. Oncol. 24 (2006) 3293–3298. [100] I. Martínez-Corral, D. Olmeda, R. Diéguez-Hurtado, T. Tammela, K. Alitalo, S. Ortega, In vivo imaging of lymphatic vessels in development, wound healing, inflammation, and tumor metastasis, Proc. Natl. Acad. Sci. 109 (2012) 6223–6228.
[101] B.J. Vakoc, R.M. Lanning, J.A. Tyrrell, T.P. Padera, L.A. Bartlett, T. Stylianopoulos, L.L. Munn, G.J. Tearney, D. Fukumura, R.K. Jain, Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging, Nat. Med. 15 (2009) 1219–1223.
[102] K.J. Bayless, H.-I. Kwak, S.-C. Su, Investigating endothelial invasion and sprouting behavior in three-dimensional collagenmatrices, Nat. Protoc. 4 (2009) 1888–1898.
[103] F. de Nigris, V. Crudele, A. Giovane, A. Casamassimi, A. Giordano, H.J. Garban, F. Cacciatore, F. Pentimalli, D.C. Marquez-Garban, A. Petrillo, CXCR4/YY1 inhibition impairs VEGF network and angiogenesis during malignancy, Proc. Natl. Acad. Sci. 107 (2010) 14484–14489.
[104] C.A. Staton,M.W. Reed, N.J. Brown, A critical analysis of current in vitro and in vivo angiogenesis assays, Int. J. Exp. Pathol. 90 (2009) 195–221.
[105] H.-I. Kwak, H. Kang, J.M. Dave, E.A. Mendoza, S.-C. Su, S.A. Maxwell, K.J. Bayless, Calpain-mediated vimentin cleavage occurs upstream of MT1-MMP membrane translocation to facilitate endothelial sprout initiation, Angiogenesis 15 (2012)
287–303.
[106] S.S. Verbridge, E.M. Chandler, C. Fischbach, Tissue-engineered three-dimensional tumor models to study tumor angiogenesis, Tissue Eng. A 16 (2010) 2147–2152. [107] R. Bansal, T. Tomar, A. ?stman, K. Poelstra, J. Prakash, Selective targeting of interferon γ to stromal fibroblasts and pericytes as a novel therapeutic approach to inhibit angiogenesis and tumor growth,Mol. Cancer Ther. 11 (2012) 2419–2428.
[108] R.K. Jain, M.F. Booth, What brings pericytes to tumor vessels? J. Clin. Investig. 112 (2003) 1134–1136.
[109] J. Taeger, C. Moser, C. Hellerbrand, M.E. Mycielska, G. Glockzin, H.J. Schlitt, E.K. Geissler, O. Stoeltzing, S.A. Lang, Targeting FGFR/PDGFR/VEGFR impairs tumor growth, angiogenesis, and metastasis by effects on tumor cells, endothelial cells, and pericytes in pancreatic cancer, Mol. Cancer Ther. 10 (2011) 2157–2167.
[110] M. Baker, S.D. Robinson, T. Lechertier, P.R. Barber, B. Tavora, G. D'Amico, D.T. Jones,
B. Vojnovic, K. Hodivala-Dilke, Use of the mouse aortic ring assay to study angiogenesis, Nat. Protoc. 7 (2012) 89–104.
[111] L.L. Chiu, M. Montgomery, Y. Liang, H. Liu, M. Radisic, Perfusable branching microvessel bed for vascularization of engineered tissues, Proc. Natl. Acad. Sci. 109 (2012) E3414–E3423.
[112] K.M. Chrobak, D.R. Potter, J. Tien, Formation of perfused, functional microvascular tubes in vitro, Microvasc. Res. 71 (2006) 185–196.
[113] J.W. Nichol, S.T. Koshy, H. Bae, C.M. Hwang, S. Yamanlar, A. Khademhosseini, Cellladen
microengineered gelatin methacrylate hydrogels, Biomaterials 31 (2010) 5536–5544.
[114] J.P. Morgan, P.F. Delnero, Y. Zheng, S.S. Verbridge, J. Chen, M. Craven, N.W. Choi, A. Diaz-Santana, P. Kermani, B. Hempstead, J.A. Lopez, T.N. Corso, C. Fischbach, A.D. Stroock, Formation of microvascular networks in vitro, Nat. Protoc. 8 (2013) 1820–1836.
[115] V. Mironov, V. Kasyanov, R.R. Markwald, Organ printing: from bioprinter to organ biofabrication line, Curr. Opin. Biotechnol. 22 (2011) 667–673.
[116] J. Malda, J. Visser, F.P. Melchels, T. Jungst, W.E. Hennink, W.J. Dhert, J. Groll, D.W. Hutmacher, 25th anniversary article: engineering hydrogels for biofabrication, Adv. Mater. 25 (2013) 5011–5028.
[117] V. Mironov, R.P. Visconti, V. Kasyanov, G. Forgacs, C.J. Drake, R.R. Markwald, Organ printing: tissue spheroids as building blocks, Biomaterials 30 (2009) 2164–2174. [118] C. Norotte, F.S. Marga, L.E. Niklason, G. Forgacs, Scaffold-free vascular tissue engineering using bioprinting, Biomaterials 30 (2009) 5910–5917.
[119] A. Skardal, J. Zhang, G.D. Prestwich, Bioprinting vessel-like constructs using hyaluronan hydrogels crosslinked with tetrahedral polyethylene glycol tetracrylates, Biomaterials 31 (2010) 6173–6181.
[120] R.P. Visconti, V. Kasyanov, C. Gentile, J. Zhang, R.R. Markwald, V. Mironov, Towards organ printing: engineering an intra-organ branched vascular tree, Expert. Opin. Biol. Ther. 10 (2010) 409–420.
[121] J.S. Miller, K.R. Stevens, M.T. Yang, B.M. Baker, D.-H.T. Nguyen, D.M. Cohen, E. Toro,
A.A. Chen, P.A. Galie, X. Yu, Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues, Nat. Mater. 11 (2012) 768–774.
[122] D.B. Kolesky, R.L. Truby, A. Gladman, T.A. Busbee, K.A. Homan, J.A. Lewis, 3D bioprinting of vascularized, heterogeneous cell‐laden tissue constructs, Adv. Mater. 26 (2014) 3124–3130.
[123] W. Wu, A. DeConinck, J.A. Lewis, Omnidirectional printing of 3D microvascular networks, Adv. Mater. 23 (2011) H178–H183.
[124] A. Alitalo, M. Detmar, Interaction of tumor cells and lymphatic vessels in cancer progression, Oncogene 31 (2012) 4499–4508.
[125] S. Hirakawa, M. Detmar, S. Karaman, Lymphatics in nanophysiology, Adv. Drug Deliv. Rev. (2014), http://dx.doi.org/10.1016/j.addr.2014.01.011.
[126] K.M. Galler, L. Aulisa, K.R. Regan, R.N. D'Souza, J.D. Hartgerink, Self-assembling multidomain peptide hydrogels: designed susceptibility to enzymatic cleavage allows enhanced cell migration and spreading, J. Am. Chem. Soc. 132 (2010) 3217–3223.
[127] J.D. Hartgerink, E. Beniash, S.I. Stupp, Self-assembly and mineralization of peptideamphiphile
nanofibers, Science 294 (2001) 1684–1688.
[128] H. Hosseinkhani, P.D. Hong, D.S. Yu, Self-assembled proteins and peptides for regenerative medicine, Chem. Rev. 113 (2013) 4837–4861.
[129] M. Matsusaki, C.P. Case, M. Akashi, Three-dimensional cell culture technique and pathophysiology, Adv. Drug Deliv. Rev. (2014), http://dx.doi.org/10.1016/j.addr. 2014.01.003.
[130] S. Ghanaati, M.J.Webber, R.E. Unger, C. Orth, J.F. Hulvat, S.E. Kiehna, M. Barbeck, A.
Rasic, S.I. Stupp, C.J. Kirkpatrick, Dynamic in vivo biocompatibility of angiogenic peptide amphiphile nanofibers, Biomaterials 30 (2009) 6202–6212.
[131] S. Zhang, F. Gelain, X. Zhao, Designer self-assembling peptide nanofiber scaffolds for 3D tissue cell cultures, Seminars in Cancer BiologyElsevier, 2005, pp. 413–420.
[132] B. Trappmann, C.S. Chen, How cells sense extracellular matrix stiffness: amaterial's perspective, Curr. Opin. Biotechnol. 24 (2013) 948–953.
[133] P.J. Stahl, N.H. Romano, D. Wirtz, S.M. Yu, PEG-based hydrogels with collagen mimetic peptide-mediated and tunable physical cross-links, Biomacromolecules 11 (2010) 2336–2344.
[134] E.L. da Rocha, L.M. Porto, C.R. Rambo, Nanotechnology meets 3D in vitro models: tissue engineered tumors and cancer therapies, Mater. Sci. Eng. C Mater. Biol. Appl. 34 (2014) 270–279.
[135] X. Xu, C.R. Sabanayagam, D.A. Harrington, M.C. Farach-Carson, X. Jia, A hydrogelbased
tumor model for the evaluation of nanoparticle-based cancer therapeutics, Biomaterials 35 (2014) 3319–3330.
[136] K.M. Charoen, B. Fallica, Y.L. Colson, M.H. Zaman, M.W. Grinstaff, Embedded multicellular spheroids as a biomimetic 3D cancer model for evaluating drug and drug–device combinations, Biomaterials 35 (2014) 2264–2271.
[137] H. Maeda, H. Nakamura, J. Fang, The EPR effect for macromolecular drug delivery to solid tumors: improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo, Adv. Drug Deliv. Rev. 65 (2013) 71–79.
[138] S. Taurin, K. Greish, Enhanced vascular permeability in solid tumors: a promise for anticancer nanomedicine, Tight Junctions in Cancer MetastasisSpringer, 2013, pp. 81–118.
[139] U. Prabhakar, H. Maeda, R.K. Jain, E.M. Sevick-Muraca,W. Zamboni, O.C. Farokhzad, S.T. Barry, A. Gabizon, P. Grodzinski, D.C. Blakey, Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology, Cancer Res. 73 (2013) 2412–2417.
[140] Y.-Q. Xiong, H.-C. Sun,W. Zhang, X.-D. Zhu, P.-Y. Zhuang, J.-B. Zhang, L.Wang,W.-z. Wu, L.-X. Qin, Z.-Y. Tang, Human hepatocellular carcinoma tumor-derived endothelial cells manifest increased angiogenesis capability and drug resistance compared with normal endothelial cells, Clin. Cancer Res. 15 (2009) 4838–4846.
[141] J.W. Franses, N.C. Drosu, W.J. Gibson, V.C. Chitalia, E.R. Edelman, Dysfunctional endothelial cells directly stimulate cancer inflammation and metastasis, Int. J. Cancer 133 (2013) 1334–1344.
[142] P.L. Apopa, Y. Qian, R. Shao, N.L. Guo, D. Schwegler-Berry, M. Pacurari, D. Porter, X.
Shi, V. Vallyathan, V. Castranova, D.C. Flynn, Iron oxide nanoparticles induce human microvascular endothelial cell permeability through reactive oxygen species production and microtubule remodeling, Part. Fibre Toxicol. 6 (2009) 1.
[143] E. Brun, M. Carriere, A. Mabondzo, In vitro evidence of dysregulation of blood–brain barrier function after acute and repeated/long-term exposure to TiO(2) nanoparticles, Biomaterials 33 (2012) 886–896.
[144] M.I. Setyawati, C.Y. Tay, S.L. Chia, S.L. Goh,W. Fang, M.J. Neo, H.C. Chong, S.M. Tan,
S.C. Loo, K.W. Ng, J.P. Xie, C.N. Ong, N.S. Tan, D.T. Leong, Titanium dioxide nanomaterials cause endothelial cell leakiness by disrupting the homophilic interaction of VE-cadherin, Nat. Commun. 4 (2013) 1673.
H.-H.G. Song et al. / Advanced Drug Delivery Reviews xxx (2014) xxx–xxx 11 Please