ak?1(k?1)b?ak(k?1)b?kbk(b?2)(k?1)bk?1(b?2), ??k?kkk?1k?1ak?2(n?1)kb(b?2)?2k?(b?2)b?2所以当n?k?1时,猜想成立,
nbn(b?2)由①②知,?n?N*,an?. nnb?22n?1(2)(ⅰ)当b?2时, an?2?n?1?1,故b?2时,命题成立;
2(ⅱ)当b?2时,b2n?22n?2b2n?22n?2n?1bn,
b2n?1?2?b?22n?1?2b2n?22n?2n?1bn,
??,bn?1?2n?1?bn?1?2n?1?2b2n?22n?2n?1bn,以上n个式子相加得
b2n?b2n?1?2???bn?1?2n?1?bn?1?2n?1???b?22n?1?22n?n?2n?1bn,
n?2n?1bn(b?2)[(b2n?b2n?1?2???b?22n?1?22n)?bn?2n](b?2) an?n?1n?nn?1nn2(b?2)2(b?2)(b2n?b2n?1?2???b?22n?1?22n)(b?2)?bn?2n(b?2) ?n?1nn2(b?2)(b2n?1?22n?1)?bn?1?2n?bn?2n?1 ?2n?1(bn?2n)(b2n?1?bn?1?2n)?(bn?2n?1?22n?1)bn?1?n?1?1.故当b?2时,命题成立; ?n?1nn22(b?2)综上(ⅰ)(ⅱ)知命题成立.
21.解:(1)kAB?y'|x?p0?(x)|x?p0?直线AB的方程为y?121p0, 212111p0?p0(x?p0),即y?p0x?p02, 4224?q?11p0p?p02,方程x2?px?q?0的判别式??p2?4q?(p?p0)2, 24两根x1,2?p?|p0?p|p0p?或p?0,
222p0p|?||p|?|0||,又0?|p|?|p0|, 22?p?p0?0,?|p???|p0ppppp|?|p|?|0|?|0|,得?|p?0|?||p|?|0||?|0|, 222222??(p,q)?|p0|. 2(2)由a?4b?0知点M(a,b)在抛物线L的下方,
①当a?0,b?0时,作图可知,若M(a,b)?X,则p1?p2?0,得|p1|?|p2|; 若|p1|?|p2|,显然有点M(a,b)?X; ?M(a,b)?X?|p1|?|p2|. ②当a?0,b?0时,点M(a,b)在第二象限,
作图可知,若M(a,b)?X,则p1?0?p2,且|p1|?|p2|; 若|p1|?|p2|,显然有点M(a,b)?X;
2?M(a,b)?X?|p1|?|p2|.
根据曲线的对称性可知,当a?0时,M(a,b)?X?|p1|?|p2|, 综上所述,M(a,b)?X?|p1|?|p2|(*);
由(1)知点M在直线EF上,方程x?ax?b?0的两根x1,2?同理点M在直线E'F'上,方程x?ax?b?0的两根x1,2?若?(a,b)?|22p1p或a?1, 22p2p或a?2, 22p1pppp|,则|1|不比|a?1|、|2|、|a?2|小, 22222p1p|?M(a,b)?X;又由(1)知,M(a,b)?X??(a,b)?|1|; 22p1|?M(a,b)?X,综合(*)式,得证. 215(x?1)2?得交点(0,?1),(2,1),可知0?p?2, 44?|p1|?|p2|,又|p1|?|p2|?M(a,b)?X,
??(a,b)?|??(a,b)?|(3)联立y?x?1,y?12x0?q112?x0, 过点(p,q)作抛物线L的切线,设切点为(x0,x0),则44x0?p2得x02?2px0?4q?0,解得x0?p?又q?p2?4q,
15(p?1)2?,即p2?4q?4?2p, 44115?x0?p?4?2p,设4?2p?t,?x0??t2?t?2??(t?1)2?,
222??max?|x055|max,又x0?,??max?;
242p2?4p?4?p?|p?2|?2,
?q?p?1,?x0?p???min?|
x0|min?1. 2