九年级上册各科教材知识点复习(7)

2021-09-24 16:34

1.二次函数y=ax²,y=a(x-h)²,y=a(x-h)² +k,

y=ax²+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表:

解析式

y=ax²

九年级上册各科教材知识点复习

y=a(x-h)²

y=a(x-h)²+k

y=ax²+bx+c

顶点坐标

(0,0)

(0,K)

(h,0)

(h,k)

(-b/2a,sqrt[4ac-b²]/4a)

对 称 轴

x=0

x=0

x=h

x=h

x=-b/2a

当h>0时,y=a(x-h)²的图象可由抛物线y=ax²向右平行移动h个单位得到,

当h<0时,则向左平行移动|h|个单位得到.

当h>0,k>0时,将抛物线y=ax&sup2;向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)&sup2;+k的图象;

当h>0,k<0时,将抛物线y=ax&sup2;向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)&sup2;+k的图象;

当h<0,k>0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)&sup2;+k的图象;

当h<0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)&sup2;+k的图象;

因此,研究抛物线 y=ax^2+bx+c(a≠0)的图象,通过配方,将一般式化为

y=a(x-h)&sup2;+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便.

2.抛物线y=ax&sup2;+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b&sup2;]/4a).

3.抛物线y=ax&sup2;+bx+c(a≠0),若a>0,当x ≤ -b/2a时,y随x的增大而减小;当x ≥ -b/2a时,y随x的增大而增大.若a<0,当x ≤ -b/2a时,y随x的增大而增大;当x ≥ -b/2a时,y随x的增大而减小.

4.抛物线y=ax&sup2;+bx+c的图象与坐标轴的交点:

(1)图象与y轴一定相交,交点坐标为(0,c);

(2)当△=b&sup2;-4ac>0,图象与x轴交于两点A(x ,0)和B(x ,0),其中的x1,x2是一元二次方程ax&sup2;+bx+c=0

(a≠0)的两根.这两点间的距离AB=|x -x | 另外,抛物线上任何一对对称点的距离可以由|2×(-b/2a)-A |(A为其中一点的横坐标)

当△=0.图象与x轴只有一个交点;

当△<0.图象与x轴没有交点.当a>0时,图象落在x轴的上方,x为任何实数

九年级上册各科教材知识点复习

时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<0.

5.抛物线y=ax&sup2;+bx+c的最值:如果a>0(a<0),则当x= -b/2a时,y最小(大)值=(4ac-b&sup2;)/4a.

顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值.

6.用待定系数法求二次函数的解析式

(1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:

y=ax&sup2;+bx+c(a≠0).

(2)当题给条件为已知图象的顶点坐标或对称轴或极大(小)值时,可设解析式为顶点式:y=a(x-h)&sup2;+k(a≠0).

(3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x )(x-x )(a≠0).

7.二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现.

知识框图

【圆的基本知识】

〖几何中圆的定义〗

几何说:平面上到定点的距离等于定长的所有点组成的图形叫做圆。定点称为圆心,定长称为半径。

轨迹说:平面上一动点以一定点为中心,一定长为距离运动一周的轨迹称为圆周,简称圆。

集合说:到定点的距离等于定长的点的集合叫做圆。

〖圆的相关量〗


九年级上册各科教材知识点复习(7).doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:五邑大学07-08-1概率论与数理统计期末考试B卷答案与评分标准(72)

相关阅读
本类排行
× 注册会员免费下载(下载后可以自由复制和排版)

马上注册会员

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: