(2)若m为小于0的常数,那么(1)中的抛物线经过怎么样的平移可以使顶点在坐标原点?
(3)设抛物线交y轴正半轴于D点,问是否存在实数m,使得△BCD为等腰三角形?若存在,求出m的值;若不存在,请说明理由.
yDOACBx
【023】如图,在梯形ABCD中,AD∥BC,AD?2,BC?4,点M是AD的中点,△MBC是等边三角形.
(1)求证:梯形ABCD是等腰梯形;
(2)动点P、Q分别在线段BC和MC上运动,且∠MPQ?60?保持不变.设PC?x,MQ?y,求y与x的函数关系式;
(3)在(2)中:①当动点P、Q运动到何处时,以点P、M和点A、B、C、D中的两个点 y取最小值时,判断为顶点的四边形是平行四边形?并指出符合条件的平行四边形的个数;②当
y△PQC的形状,并说明理由.
B
A
M
D
BEQD60° P 23题
Q C
AOPFCx24题 【024】如图,已知?ABC为直角三角形,?ACB?90?,AC?BC,点A、C在x轴上,点B坐标为(3,m)(m?0),线段AB与y轴相交于点D,以P(1,0)为顶点的抛物线过点B、D. (1)求点A的坐标(用m表示); (2)求抛物线的解析式;
(3)设点Q为抛物线上点P至点B之间的一动点,连结PQ并延长交BC于点E,连结 BQ并延长交AC于点F,试证明:FC(AC?EC)为定值.
【025】如图12,直线y??x?4与两坐标轴分别相交于A、B点,点M是线段AB上任意一点(A、B两点除外),过M分别作MC⊥OA于点C,MD⊥OB于D.
(1)当点M在AB上运动时,你认为四边形OCMD的周长是否发生变化?并说明理由; (2)当点M运动到什么位置时,四边形OCMD的面积有最大值?最大值是多少?
(3)当四边形OCMD为正方形时,将四边形OCMD沿着x轴的正方向移动,设平移的距离为
a(0?a?4),正方形OCMD与△AOB重叠部分的面积为S.试求S与a的函数关系式并画出该
函数的图象.
y B D M B y B y O C A x O A 图12(2)
x O A 图12(3)
x
图12(1)
【026】如图11,在△ABC中,∠C=90°,BC=8,AC=6,另有一直角梯形DEFH
(HF∥DE,∠HDE=90°)的底边DE落在CB上,腰DH落在CA上,且DE=4,∠DEF=∠CBA,AH∶AC=2∶3 (1)延长HF交AB于G,求△AHG的面积.
(2)操作:固定△ABC,将直角梯形DEFH以每秒1个
单位的速度沿CB方向向右移动,直到点D与点B 重合时停止,设运动的时间为t秒,运动后的直角梯 形为DEFH′(如图12). 探究1:在运动中,四边形CDH′H能否为正方形?若能,
请求出此时t的值;若不能,请说明理由.
探究2:在运动过程中,△ABC与直角梯形DEFH′重叠
部分的面积为y,求y与t的函数关系.
【027】阅读材料:
如图12-1,过△ABC的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△
ABC的“水平宽”(a),中间的这条直线在△ABC内部线段的长度叫△ABC的“铅垂高(h)”.我们可得出一种计算三角形面积的新方法:S?ABC?1ah,即三角形面积等于水平宽与铅垂高乘积的2一半.解答下列问题:如图12-2,抛物线顶点坐标为点C(1,4),交x轴于点A(3,0),交y轴于点B.(1)求抛物线和直线AB的解析式;
(2)点P是抛物线(在第一象限内)上的一个动点,连结PA,PB,当P点运动到顶点C时,求△CAB的铅垂高CD及S?CAB;(3)是否存在一点P,使S△PAB=请说明理由.
B
D 1 O
1
A
x
y C 9S△CAB,若存在,求出P点的坐标;若不存在,8
【028】如图,已知抛物线与x交于A(-1,0)、E(3,0)两点,与y轴交于点B(0,3)。 (1) 求抛物线的解析式;
(2) 设抛物线顶点为D,求四边形AEDB的面积;
(3) △AOB与△DBE是否相似?如果相似,请给以证明;如果不相似,请说明理由。
【029】已知二次函数y?x?ax?a?2。
(1)求证:不论a为何实数,此函数图象与x轴总有两个交点。
(2)设a<0,当此函数图象与x轴的两个交点的距离为13时,求出此二次函数的解析式。
(3)若此二次函数图象与x轴交于A、B两点,在函数图象上是否存在点P,使得△PAB的面积为
2313,若存在求出P点坐标,若不存在请说明理由。 20)和点E(0,4).动点C从点M(5,0)出【030】如图,已知射线DE与x轴和y轴分别交于点D(3,发,以1个单位长度/秒的速度沿x轴向左作匀速运动,与此同时,动点P从点D出发,也以1个
单位长度/秒的速度沿射线DE的方向作匀速运动.设运动时间为t秒. (1)请用含t的代数式分别表示出点C与点P的坐标; (2)以点C为圆心、
1t个单位长度为半径的⊙C与x轴交于A、B两点(点A在点B的左侧),2连接PA、PB. y ①当⊙C与射线DE有公共点时,求t的取值范围; ②当△PAB为等腰三角形时,求t的值.
E
P
D A C B M O
【031】已知直角坐标系中菱形ABCD的位置如图,C,D两点的坐标分别为(4,0),(0,3). 现有两动点P,Q分别从A,C同时出发,点P沿线段AD向终点D运动,点Q沿折线CBA 向终点A运动,设运动时间为t秒.
x
(1)填空:菱形ABCD的边长是 ▲ 、面积是 ▲ 、 高BE的长是 ▲ ; (2)探究下列问题:
①若点P的速度为每秒1个单位,点Q的速度为每秒2个单位.当点Q在线段BA上时,求△APQ的面积S关于t的函数关系式,以及S的最大值;
②若点P的速度为每秒1个单位,点Q的速度变为每秒k个单位,在运动过程中,任何时刻都有相应的k值,使得△APQ沿它的一边翻折,翻折前后两个三角形组成的四边形为菱形.请探究当t=4秒时的情形,并求出k的值。
yDEAOCxB
【032】如图,已知A、B是线段MN上的两点,MN?4,MA?1,MB?1.以A为中心顺时针旋
转点M,以B为中心逆时针旋转点N,使M、N两点重合成一点C,构成△ABC,设AB?x. (1)求x的取值范围;
(2)若△ABC为直角三角形,求x的值; (3)探究:△ABC的最大面积? C M A B N
2【033】已知抛物线y?x?2x?a(a?0)与y轴相交于点A,顶点为M.直线y?1x?a分2别与x轴,y轴相交于B,C两点,并且与直线AM相交于点N.
(1)填空:试用含a的代数式分别表示点M与N的坐标,则M? , ?,N? , ?; (2)如图,将△NAC沿y轴翻折,若点N的对应点N′恰好落在抛物线上,AN′与x轴交于点