17.(本题满分12分)数列?an?满足a1?2,an?1?3an?2. (Ⅰ)求数列?an?的通项公式;
(Ⅱ)求数列?an?的前n项和Sn的公式.
18.(本题满分12分)已知函数f(x)?2sin(x??3),g(x)?sinx?3cosx.求使
f(x)?g(x)?
1f(x)?g(x)成立的所有x的集合. 219.(本题满分12分)设数列?an?的前n项和为Sn,对任意的正整数n,都有an?3Sn?1成立.
(Ⅰ)求数列?an?的通项公式;
(Ⅱ)记bn???1???2n?1??an,求数列?bn?的前n项和为Tn.
n
20.(本题满分13分)已知函数f(x)?(x?1)(x?a)(a?R),当f'(?1)?0时,求函数
23y?f(x),在[?,1]上的最大值和最小值.
2 21.(本题满分14分)在?ABC中,角A、B、C的对边分别为a、b、c,若
AB?AC?BA?BC?1.
(Ⅰ)求证:A?B; (Ⅱ)求边长c的值;
????????(Ⅲ)若AB?AC?6,求?ABC的面积.
答案:
17.函数f(x)?(1?a2)x2?3(1?a)x?6的定义域为[?2,1],求实数a的值.
22解:等价于不等式(1?a)x?3(1?a)x?6?0的解集为[?2,1], 显然1?a?0
2?1?a2?0且x1??2、x2?1是方程 (1?a2)x2?3(1?a)x?6?0的两根,
???a??1或a?1???x3(a?1)?a??1或a?11???1?a2?a21?x2????3a?2?0,解得a的值为a=2. ??a2??x6??41?x2?1?a2??218.数列?an?满足a1?2,an?1?3an?2.
(Ⅰ)求数列?an?的通项公式;
(Ⅱ)求数列?an?的前n项和Sn的公式. 解:(Ⅰ)数列?an?1n?的通项公式为an?3?1;
(Ⅱ)数列?an?的前n项和的公式为
S1?3n3n?1n?1?3?n?2?n.
19
.
已
知
函
数
f(x)?2sin(x??3),g(x)?sinx?3cosx.f(x)?g(x)?12f(x)?g(x)成立的所有x的集合. 解:
f(x)?2sin(x??3)?sinx?3cosx,
f(x)?g(x)?2sinx,f(x)?g(x)?sin2x?3cos2x,
f(x)?g(x)?12f(x)?g(x)?2sinx?12(sin2x?3cos2x) 4sinx?sin2x?3(1?sin2x)?4sin2x?4sinx?3?0,
解得 ?12?sinx?.1 {x|2k????6?x?2k??76}. 20.设数列?an?的前n项和为Sn,对任意的正整数n,都有an?3Sn?1成立.
(1) 求数列?an?的通项公式;
求使
(2) 记bn???1???2n?1??an,求数列?bn?的前n项和为Tn.
n解:(1)当n?1时,a1?3S1?1,?a1??1 2an?11?? an2又?an?3Sn?1,an?1?3Sn?1?1?an?1?an?3an?1,即1?an?(?)n
2?1??1?(2)bn???1???2n?1???????2n?1???
?2??2?nnn1?1??1??1??Tn?1??3????5???????2n?1???? ???①
2?2??2??2?1?1??1??1??1?Tn????3???????2n?3??????2n?1????2?2??2??2??2?23nn?123n ???②
nn?1??1?2?1?311?1???1?①-②得:Tn??2???????????????2n?1????
22?2???2????2??2??
?Tn?1?4??1????2?2??1?n?1??1????n?1???2????2??2n?1???1???1?2?1?2
n?1n?1??1?n?1?3?1??1??1?2?1?????2??2n?1????=3?(n?)??
2?2??2????2???)21.已知函数f(x)?(x?1)(x?a)(a?R,当f'(?1)?0时,求函数y?f(x),在
23[?,1]上的最大值和最小值. 2解:f(x)?x?ax?x?a,32f'(x)?3x2?2ax?1,
f'(?1)?3?2a?1?0, ∴ a?2.
1f'(x)?3x2?4x?1?3(x?)(x?1),
311f'(x)?3(x?1)(x?)?0?x??1,或x??;
3311f'(x)?3(x?1)(x?)?0??1?x??.
3321,?1],[?,1]; 331函数的递减区间是[?1,?].
3313150f(?)?,f(?1)?2,f(?)?,f(1)?6,
28327313∴ 函数f(x)在[?,1]上的最大值为6,最小值.
2822.在?ABC中,角A、B、C的对边分别为a、b、c,
∴ 函数的递增区间是[?若AB?AC?BA?BC?1. (Ⅰ)求证:A?B; (Ⅱ)求边长c的值; (Ⅲ)若AB?AC?6,求?ABC的面积.
????????????????解:(Ⅰ)∵AB·AC=BA·BC.
即bc由正弦定理得:?bccosA?accosB,osA?acosB,sinBcosA?sinAcosB
?sin?A?B??0,又????A?B??,?A?B?0,?A?B
????????(Ⅱ)∵AB·AC=1,?bccosA?1
b2?c2?a2222由余弦定理得:bc·=1,即b?c?a?2
2bc由(Ⅰ)得:a?b,?c?2,?c?22
????????22(Ⅲ)∵|AB+AC|=6,∴AB?AC?2AB?AC?6
即c?b?2?6,?c?2,?b?2,?b?角形.
22222,a?b?2,∴△ABC为正三
?S?ABC?3?13???2???2??
?222??陕西师大附中2011—2012学年度高三第一学期期中考试数学试题(文科)
16.(本小题满分12分)在?ABC中,角A、B、C 所对的边分别为a、b、c,若向量
?????1m?(cosB,sinC),n?(cosC,?sinB),且m?n? .
2(Ⅰ)求角A的大小;
(Ⅱ)若a?23,?ABC的面积S?3,求b?c的值.