计量经济软件Eviews上机指导及演示示例
七、区间预测
1X?X YF?Y0?t?(n?2)?1??F2n?xi2???2,
其中
?x2i2??(Xi?X)2??X(n?1)
代入相应数据计算即可得区间估计值。
Mean
Median Maximum Minimum Std. Dev.
X 5403.214 4926.830 8839.680 4009.610 1446.658
Y
4342.317 3862.585 7054.090 3099.360 1166.015
EVIEWS在计量经济学教学过程中的演示示例(二)
练习二(习题集P18第10题)
一、按题意在EVIEWS中输入数据;
二、在group窗口view—graph—scatter—simple scatter,绘制散点图。
选择view—graph—scatter—scatter with regression,绘制回归直线
Y vs. X676543Y54Y3221468X1012141468X101214
三、在主窗口QUICK菜单下选择estimate equation,在弹出对话框中输入Y C X,进行最
小二乘估计参数。
四、在equantion窗口viiew菜单下选择representations选项,可得回归方程。
Y = 0.009777361481 + 0.4851934577*X
五、选择equantion窗口viiew菜单下estimation output或stats按钮,可得回归结果输出:
Dependent Variable: Y Method: Least Squares
Date: 10/13/05 Time: 21:18 Sample: 1985 1996
Included observations: 12 Variable
CoefficienStd. Error t-Statistic
t Prob.
31
计量经济软件Eviews上机指导及演示示例
C X R-squared
Adjusted R-squared S.E. of regression Sum squared resid Log likelihood
Durbin-Watson stat
0.009777 0.485193 0.284926 0.033344 0.034315 14.55127 0.9733 0.0000 4.016667 1.138447 0.244611 0.325428 211.7394 0.000000
0.954902 Mean dependent var 0.950392 S.D. dependent var 0.253564 Akaike info
criterion
0.642947 Schwarz criterion 0.532337 F-statistic
1.321761 Prob(F-statistic)
六、点预测
Y = 0.009777361481 + 0.4851934577*X=0.009777361481 + 0.4851934577*15=7.2876
EVIEWS在计量经济学教学过程中的演示示例(三)
目的:1、正确使用EVIEWS
2、会使用OLS和WLS,Goldfeld-Quandt检验
3、能根据计算结果进行异方差分析和出现异方差性后的补救。 3、数据为demo data1
实例:某市人均储蓄与人均收入的关系分析(异方差性检验及补救)
根据某市1978-1998年人均储蓄与人均收入的数据资料(见下表),其中X为人均收入(元),Y为人均储蓄(元),经分析人均储蓄受人均收入的线性影响,可建立一元线性回归模型进行分析。
obs 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
X 590.2000 664.9400 809.5000 875.5400 991.2500 1109.950 1357.870 1682.800 1890.580 2098.250 2499.580 2827.730 3084.170 3462.710 3932.520 5150.790 7153.350 9076.850 10448.21 11575.48 Y 107.0000 123.0000 159.0000 189.0000 233.0000 312.0000 401.0000 522.0000 664.0000 871.0000 1033.000 1589.000 2209.000 2878.000 3722.000 5350.000 8080.000 11758.00 15839.00 18196.00 32
计量经济软件Eviews上机指导及演示示例
1998
12500.84 20954.00 1、用OLS估计法估计参数 设模型为:
Y??1??2X??
运行EVIEWS软件,并输入数据,得计算结果如下:
Dependent Variable: Y Method: Least Squares
Date: 10/11/05 Time: 23:10 Sample: 1978 1998
Included observations: 21 Variable
C X R-squared
Adjusted R-squared S.E. of regression Sum squared resid Log likelihood
Durbin-Watson stat CoefficienStd. Error t-Statistic
t -2185.998 1.684158 339.9020 -6.431262 0.062166 27.09150 Prob. 0.0000 0.0000 4533.238 6535.103 16.86989 16.96937 733.9495 0.000000 0.974766 Mean dependent var 0.973438 S.D. dependent var 1065.086 Akaike info
criterion
21553736 Schwarz criterion -175.1338 F-statistic
0.293421 Prob(F-statistic)
2、异方差检验
(1)Goldfeld-Quandt检验
在Procs菜单项选Sort series项,出现排序对话框,输入X,OK。
在Sample菜单里,将时间定义为1978-1985,用OLS方法计算得如下结果:
Y = -145.441495 + 0.3971185479*X (-8.730234) (25.42693)
R-squared=0.990805 Sum squared resid1=15.12284
Dependent Variable: Y Method: Least Squares
Date: 10/11/05 Time: 23:25 Sample: 1978 1985
Included observations: 8 Variable
C X R-squared
Adjusted R-squared S.E. of regression Sum squared resid Log likelihood
CoefficienStd. Error t-Statistic
t -145.4415 0.397119 16.65952 -8.730234 0.015618 25.42693 Prob. 0.0001 0.0000 255.7500 146.0105 8.482607 8.502468 646.5287
33
0.990805 Mean dependent var 0.989273 S.D. dependent var 15.12284 Akaike info
criterion
1372.202 Schwarz criterion -31.93043 F-statistic
计量经济软件Eviews上机指导及演示示例
Durbin-Watson stat 1.335534 Prob(F-statistic) 0.000000
在Sample菜单里,将时间定义为1991-1998,用OLS方法计算得如下结果:
Y = -4602.367144 + 1.952519317*X (-5.065962) (18.40942)
R-squared=0.982604 Sum squared resid2=5811189.
Dependent Variable: Y Method: Least Squares
Date: 10/11/05 Time: 23:29 Sample: 1991 1998
Included observations: 8 Variable
C X R-squared
Adjusted R-squared S.E. of regression Sum squared resid Log likelihood
Durbin-Watson stat
CoefficienStd. Error t-Statistic
t -4602.367 1.952519 908.4882 -5.065962 0.106061 18.40942 Prob. 0.0023 0.0000 10847.12 6908.102 16.83373 16.85359 338.9068 0.000002 0.982604 Mean dependent var 0.979705 S.D. dependent var 984.1400 Akaike info
criterion
5811189. Schwarz criterion -65.33492 F-statistic
0.837367 Prob(F-statistic) e?求F统计量:F??e2221?5811189?4334.9370,查F分布表,给定显著性
1372.202水平??0.05,得临界值F0.05(6,6)?4.28,比较F?4334.9370>F0.05(6,6)?4.28,
2拒绝原假设H0:?12??2,表明随机误差项显著的存在异方差。
3、异方差的修正 (1)WLS估计法。 首先生成权函数W?1,然后用OLS估计参数, abs(resid)Y = -2262.639946 + 1.566910934*X
Dependent Variable: Y Method: Least Squares
Date: 10/12/05 Time: 08:07 Sample: 1978 1998
Included observations: 21 Weighting series: W Variable
C X
CoefficienStd. Error t-Statistic
t -2262.640 1.566911 131.2507 -17.23907 0.057637 27.18590 Prob. 0.0000 0.0000 34
计量经济软件Eviews上机指导及演示示例
Weighted Statistics R-squared
Adjusted R-squared S.E. of regression Sum squared resid Log likelihood
Durbin-Watson stat Unweighted Statistics R-squared
Adjusted R-squared S.E. of regression Durbin-Watson stat 2183.201 2104.209 15.02583 15.12530 474.5211 0.000000
0.961501 Mean dependent var 0.959475 S.D. dependent var 423.5951 Akaike info
criterion
3409224. Schwarz criterion -155.7712 F-statistic
0.354490 Prob(F-statistic)
0.962755 Mean dependent var 4533.238 0.960794 S.D. dependent var 6535.103 1293.978 Sum squared resid 31813191 0.224165
(2)对数变换法。
用GENR生成LY和LX序列,用OLS方法求LY 对LX的回归,结果如下:
LY = -6.839135503 + 1.787148637*LX
Dependent Variable: LY Method: Least Squares
Date: 10/12/05 Time: 00:05 Sample: 1978 1998
Included observations: 21 Variable
C LX R-squared
Adjusted R-squared S.E. of regression Sum squared resid Log likelihood
Durbin-Watson stat CoefficienStd. Error t-Statistic
t -6.839136 1.787149 0.237565 -28.78845 0.030033 59.50680 Prob. 0.0000 0.0000 0.994663 Mean dependent var 7.195082 0.994382 S.D. dependent var 1.746173 0.130880 Akaike info -1.138677
criterion
0.325463 Schwarz criterion -1.039199 13.95611 F-statistic 3541.059 0.642916 Prob(F-statistic) 0.000000
比较方法(1)和(2),可以看出X与Y在对数线性回归下拟合效果较好。原因是Y的曲线呈对数型图形有关。
2500020000150001000050000788082848688Y9092949698
35