计量经济软件Eviews上机指导及演示示例(8)

2019-01-05 12:05

计量经济软件Eviews上机指导及演示示例

EVIEWS在计量经济学教学过程中的演示示例(四)

目的:1、正确使用EVIEWS

2、能根据计算结果进行多重共线性检验和出现多重共线性时的补救。 3、数据为demo data2

实例:我国钢材供应量分析(多重共线性检验及补救)

通过分析我国改革开放以来(1978-1997)钢材供应量的历史资料,可以建立一个单一方程模型。根据理论及对现实情况的认识,影响我国钢材供应量Y(万吨)的主要因素有:原油产量X1(万吨),生铁产量X2(万吨),原煤产量X3(万吨),电力产量X4(亿千瓦小时),固定资产投资X5(亿元),国内生产总值X6(亿元),铁路运输量X7(万吨)。 obs X1 X2 X3 X4 X5 X6 X7 Y 1978 10405 3479.00 6.81 2566 668.72 3624.1 110119 2208 1979 10615 3673 6.35 2820 699.36 4038.2 111893 2497 1980 10595 3802 6.2 3006 746.9 4517.8 111279 2716 1981 10122 3417 6.22 3093 638.21 4862.4 107673 2670 1982 10212 3551 6.66 3277 805.9 5294.7 113495 2920 1983 10607 3738 7.15 3514 885.26 5934.5 118784 3072 1984 11461 4001 7.89 3770 1052.43 7171 124074 3372 1985 12490 4834 8.72 4107 1523.51 8964.4 130709 3693 1986 13069 5064 8.94 4495 1795.32 10202.2 135635 4058 1987 13414 5503 9.28 4973 2101.69 11962.5 140653 4386 1988 13705 5704 9.8 5452 2554.86 14928.3 144948 4689 1989 13764 5820 10.54 5848 2340.52 16909.2 151489 4859 1990 13831 6238 10.8 6212 2534 18547.9 150681 5153 1991 14099 6765 10.87 6775 3139.03 21617.8 152893 5638 1992 14210 7589 11.16 7539 4473.76 26638.1 157627 6697 1993 14524 8956 11.5 8395 6811.35 34634.4 162663 7716 1994 14608 9741 12.4 9281 9355.35 46759.4 163093 8428 1995 15004.95 10529.27 13.61 10070.3 10702.97 58478.1 165855 8979 1996 15733.39 10722.5 13.97 10813.1 12185.79 67884.6 168803 9338 1997 16074.14 11511.41 13.73 11355.53 13838.96 74772.4 169734 9978

设模型的函数形式为:

Y??0??1X1??2X2??3X3??4X4??5X5??6X6??7X7??

一、运用OLS估计法对上式中参数进行估计,EVIEWS操作步骤为:

1、 在FILE菜单中选择NEW-WORKFILE,输入起止时间。

2、 在主窗口菜单选QUICK-EMPTY GROUP,在编辑数据区输入Y X1 X2 X3 X4 X5 X6

X7所对应的数据。

3、 在主窗口菜单选在QUICK-ESTIMATE EQUATION,对参数做OSL估计,输出结果见

下表:

Variable CoefficienStd. Error t-Statistic Prob. 36

计量经济软件Eviews上机指导及演示示例

t C X1 X2 X3 X4 X5 X6 X7 R-squared

Adjusted R-squared S.E. of regression Sum squared resid Log likelihood

Durbin-Watson stat 139.2362 -0.051954 0.127532 -24.29427 0.863283 0.330914 -0.070015 0.002305 718.2493 0.193855 0.090753 -0.572483 0.132466 0.962751 97.48792 -0.249203 0.186798 4.621475 0.105592 3.133889 0.025490 -2.746755 0.019087 0.120780 0.8495 0.5776 0.3547 0.8074 0.0006 0.0086 0.0177 0.9059 5153.350 2511.950 12.08573 12.48402 2201.081 0.000000 0.999222 Mean dependent var 0.998768 S.D. dependent var 88.17626 Akaike info

criterion

93300.63 Schwarz criterion -112.8573 F-statistic

1.703427 Prob(F-statistic) Y = 139.2361608 - 0.05195439459*X1 + 0.1275320853*X2 - 24.294272*X3 + 0.8632825292*X4 + 0.330913843*X5 - 0.07001518918*X6 + 0.002305379405*X7

二、分析

由F=2201.081>F0.05(7,12)=2.91(显著性水平a=0.05),表明模型从整体上看钢材供应量与解释变量之间线性关系显著。 三、检验

计算解释变量之间的简单相关系数。EVIEWS过程如下:

1、 主菜单QUICK-GROUP STATISTICS-CORRRELATION,在对话框中输入X1 X2 X3 X4 X5 X6 X7,结果如下:

X1 X2 X3 X4 X5 X6 X7

X1 1.000000 0.921956 0.975474 0.931882 0.826401 0.845837 0.986815

X2 0.921956 1.000000 0.964400 0.994921 0.969686 0.972530 0.931689

X3 0.975474 0.964400 1.000000 0.974809 0.894963 0.913344 0.982943

X4 0.931882 0.994921 0.974809 1.000000 0.959613 0.969105 0.945444

X5 0.826401 0.969686 0.894963 0.959613 1.000000 0.996169 0.827643

X6 0.845837 0.972530 0.913344 0.969105 0.996169 1.000000 0.846079

X7 0.986815 0.931689 0.982943 0.945444 0.827643 0.846079 1.000000

2、由上表可以看出,解释变量之间存在高度线性相关性。尽管方程整体线性回归拟合较好,但X1 X2 X3 X7变量的参数t值并不显著, X3 X6 系数的符号与经济意义相悖。表明模型确实存在严重的多重共线性。

四、修正

1、运用OLS方法逐一求Y对各个解释变量的回归。结合经济意义和统计检验选出拟合效果最好的一元线性回归方程。

Variable

C X1 R-squared

CoefficienStd. Error t-Statistic

t -10123.78 1.181784 1528.060 -6.625250 0.116936 10.10629 Prob. 0.0000 0.0000 0.850171 Mean dependent var 5153.350

37

计量经济软件Eviews上机指导及演示示例

Adjusted R-squared 0.841847 S.D. dependent var 2511.950 S.E. of regression 998.9623 Akaike info

16.74595 criterion

Sum squared resid 17962663 Schwarz criterion 16.84552 Log likelihood

-165.4595 F-statistic

102.1371 Durbin-Watson stat 0.217842 Prob(F-statistic) 0.000000 Variable

CoefficienStd. Error t-Statistic

Prob. t C -618.7199 108.3930 -5.708116 0.0000 X2 0.926212 0.016019 57.82017 0.0000 R-squared

0.994645 Mean dependent var 5153.350 Adjusted R-squared 0.994347 S.D. dependent var 2511.950 S.E. of regression 188.8610 Akaike info

13.41454 criterion

Sum squared resid 642032.9 Schwarz criterion 13.51411 Log likelihood

-132.1454 F-statistic

3343.172 Durbin-Watson stat 0.962290 Prob(F-statistic) 0.000000 Variable

CoefficienStd. Error t-Statistic

Prob. t C -3770.942 581.6642 -6.483023 0.0000 X3 926.7178 58.38537 15.87243 0.0000 R-squared

0.933317 Mean dependent var 5153.350 Adjusted R-squared 0.929612 S.D. dependent var 2511.950 S.E. of regression 666.4367 Akaike info

15.93641 criterion

Sum squared resid 7994483. Schwarz criterion 16.03598 Log likelihood

-157.3641 F-statistic

251.9341 Durbin-Watson stat 0.477559 Prob(F-statistic) 0.000000 Variable

CoefficienStd. Error t-Statistic

Prob. t C -34.32474 91.75324 -0.374098 0.7127 X4 0.884047 0.014146 62.49381 0.0000 R-squared

0.995412 Mean dependent var 5153.350 Adjusted R-squared 0.995157 S.D. dependent var 2511.950 S.E. of regression 174.8044 Akaike info

13.25985 criterion

Sum squared resid 550018.2 Schwarz criterion 13.35942 Log likelihood

-130.5985 F-statistic

3905.476 Durbin-Watson stat 0.824221 Prob(F-statistic) 0.000000 Variable

CoefficienStd. Error t-Statistic

Prob. t C 2896.350 211.0245 13.72518 0.0000 X5 0.572451 0.036983 15.47892 0.0000 R-squared

0.930123 Mean dependent var 5153.350 Adjusted R-squared 0.926241 S.D. dependent var 2511.950 S.E. of regression

682.2088 Akaike info 15.98319

38

计量经济软件Eviews上机指导及演示示例

criterion

8377359. Schwarz criterion -157.8319 F-statistic

0.181794 Prob(F-statistic) CoefficienStd. Error t-Statistic

t 2720.664 0.108665 205.3405 0.006568 13.24952 16.54535 Sum squared resid Log likelihood

Durbin-Watson stat 16.08276 239.5971 0.000000 Prob. 0.0000 0.0000 5153.350 2511.950 15.85869 15.95827 273.7485 0.000000 Prob. 0.0000 0.0000 5153.350 2511.950 16.52915 16.62872 131.2225 0.000000

Variable

C X6 R-squared

Adjusted R-squared S.E. of regression Sum squared resid Log likelihood

Durbin-Watson stat 0.938303 Mean dependent var 0.934875 S.D. dependent var 641.0376 Akaike info

criterion

7396725. Schwarz criterion -156.5869 F-statistic

0.259927 Prob(F-statistic) CoefficienStd. Error t-Statistic

t -9760.099 0.106826 1317.227 -7.409582 0.009326 11.45524

Variable

C X7 R-squared

Adjusted R-squared S.E. of regression Sum squared resid Log likelihood

Durbin-Watson stat 0.879375 Mean dependent var 0.872673 S.D. dependent var 896.3356 Akaike info

criterion

14461517 Schwarz criterion -163.2915 F-statistic

0.183657 Prob(F-statistic)

经分析在7个一元回归模型中钢材供应量Y对电力产量X4的线性关系强,拟合度好,即:

Y = -34.32474492 + 0.8840472792*X4

(-0.374098) (62.49381)

R=0.995412 S.E.=174.8044,F=3905.476

截距项不显著,去掉,重新估计:

2

Y = 0.8792594492*X4

2、逐步回归。

将其余解释变量逐一代入上式,得如下模型:

Y = -0.005935225118*X1 + 0.8906555628*X4

(-0.604681) (45.03888)

R=0.995469 S.E.=173.7270, F=3954.290

式中X1不显著,删去,继续:

2

Y = 0.1741981867*X2 + 0.6978252624*X4

(1.879546) (7.217200)

R=0.996135 S.E.=160.4431, F=4639.290

2

Y = 0.2753793175*X2 + 0.5595511241*X4 + 0.04060861466*X5

39

计量经济软件Eviews上机指导及演示示例

(3.082485) (5.637333) (2.615818)

2

R=0.997244 S.E.=139.4060, F=3075.985

Y = 0.466836912*X2 + 0.5219953469*X4 - 0.03080496295*X5 - 0.004998894793*X7

(3.245804) (5.366654) (-0.674009) (-1.651391)

2

R=0.997646 S.E.=132.8222, F=2259.899

X7不符合经济意义,应去掉。

所以:

Y = 0.2753793175*X2 + 0.5595511241*X4 + 0.04060861466*X5

(3.082485) (5.637333) (2.615818)

2

R=0.997244 S.E.=139.4060, F=3075.985

即为最优模型。

Dependent Variable: Y Method: Least Squares

Date: 10/17/05 Time: 22:53 Sample: 1978 1997

Included observations: 20 Variable

X2 X4 X5 R-squared

Adjusted R-squared S.E. of regression Sum squared resid Log likelihood

Durbin-Watson stat CoefficienStd. Error t-Statistic

t 0.275379 0.559551 0.040609 0.089337 0.099258 0.015524 3.082485 5.637333 2.615818 Prob. 0.0068 0.0000 0.0181 5153.350 2511.950 12.85014 12.99950 3075.985 0.000000 0.997244 Mean dependent var 0.996920 S.D. dependent var 139.4060 Akaike info

criterion

330378.5 Schwarz criterion -125.5014 F-statistic

0.790639 Prob(F-statistic)

EVIEWS在计量经济学教学过程中的演示示例(五)

目的:1、正确使用EVIEWS

2、能根据计算结果进行序列相关性检验和补救。 3、数据为demo data3

实例:国内生产总值和出口总额之间的关系分析(序列相关性检验及补救)

根据某地区1978-1998年国内生产总值与出口总额的数据资料,其中X表示国内生产总值(人民币亿元),Y表示出口总额(人民币亿元)。试建立一元线性回归函数。设模型函数形式为:

Yt??1??2Xt??t

obs 1978 1979

X

3624.100 4038.200 Y 134.8000 139.7000

40


计量经济软件Eviews上机指导及演示示例(8).doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:青海省2015年电机装配工:电力设施保护考试题

相关阅读
本类排行
× 注册会员免费下载(下载后可以自由复制和排版)

马上注册会员

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: