应 用 时 间 序 列 分 析 实 验 报 告 实验名称 第三章 平稳时间序列分析 一、上机练习 data example3_1; input x@@; time=_n_; cards; 0.30 -0.45 0.036 0.00 0.17 0.45 2.15 4.42 3.48 2.99 1.74 2.40 0.11 0.96 0.21 -0.10 -1.27 -1.45 -1.19 -1.47 -1.34 -1.02 -0.27 0.14 -0.07 0.10 -0.15 -0.36 -0.50 -1.93 -1.49 -2.35 -2.28 -0.39 -0.52 -2.24 -3.46 -3.97 -4.60 -3.09 -2.19 -1.21 0.78 0.88 2.07 1.44 1.50 0.29 -0.36 -0.97 -0.30 -0.28 0.80 0.91 1.95 1.77 1.80 0.56 -0.11 0.10 -0.56 -1.34 -2.47 0.07 -0.69 -1.96 0.04 1.59 0.20 0.39 1.06 -0.39 -0.16 2.07 1.35 1.46 1.50 0.94 -0.08 -0.66 -0.21 -0.77 -0.52 0.05 ; proc gplot data=example3_1; plot x*time=1; symbol c=red i=join v=star; run; 建立该数据集,绘制该序列时序图得: 根据所得图像,对序列进行平稳性检验。时序图就是一个平面二维坐标图,通常横轴表示时间,纵 1
轴表示序列取值。时序图可以直观地帮助我们掌握时间序列的一些基本分布特征。 根据平稳时间序列均值、方差为常数的性质,平稳序列的时序图应该显示出该序列始终在一个常数值附近随机波动,而且波动的范围有界的特点。如果观察序列的时序图,显示出该序列有明显的趋势性或周期性,那它通常不是平稳序列。从图上可以看出,数值围绕在0附近随机波动,没有明显或周期,其本可以视为平稳序列,时序图显示该序列波动平稳。 proc arima data=example3_1; identify var=x nlag=8; run; 图一 图二 样本自相关图 图三 样本逆自相关图 2
图四 样本偏自相关图 图五 纯随机检验图 实验结果分析: (1)由图一我们可以知道序列样本的序列均值为-0.06595,标准差为1.561613,观察值个数为84个。 (2)根据图二序列样本的自相关图我们可以知道该图横轴表示自相关系数,综轴表示延迟时期数,用水平方向的垂线表示自相关系数的大小。我们发现样本自相关图延迟3阶之后,自相关系数都落入2倍标准差范围以内,而且自相关系数向0.03衰减的速度非常快,延迟5阶之后自相关系数即在0.03值附近波动。这是一个短期相关的样本自相关图。所以根据样本自相关图的相关性质,可以认为该序列平稳。 (3)根据图五的检验结果我们知道,在各阶延迟下LB检验统计量的P值都非常小(<0.0001),所以我们可以以很大的把握(置信水平>99.999%)断定该序列样本属于非白噪声序列。 proc arima data=example3_1; identify var=x nlag=8 minic p= (0:5) q=(0:5); run; IDENTIFY命令输出的最小信息量结果 3
某个观察值序列通过序列预处理,可以判定为平稳非白噪声序列,就可以利用ARMA模型对该序列建模。建模的基本步骤如下: A:求出该观察值序列的样本自相关系数(ACF)和样本偏自相关系数(PACF)的值。 B:根据样本自相关系数和偏自相关系数的性质,选择适当地ARMA(p,q)模型进行拟合。 C:估计模型中未知参数的值。 D:检验模型有效性。如果拟合模型不通过检验,转向步骤B,重新选择模型再拟合。 E:模型优化。如果拟合模型通过检验,仍然转向步骤B,充分考虑各种可能,建立多个拟合模型,从所有通过检验中选择最优模型。 F:利用拟合模型,预测序列的将来走势。 为了尽量避免因个人经验不足导致的模型识别问题,SAS系统还提供了相对最优模型识别。最后一条信息显示,在自相关延迟阶数小于等于5,移动平均延迟阶数也小于等于5的所有ARMR(p,q)模型中,BIC信息量相对最小的是ARMR(0,4)模型,即MA(4)模型。 需要注意的是,MINIC只给出一定范围内SBC最小的模型定阶结果,但该模型的参数未必都能通过参数检验,即经常会出现MINIC给出的模型阶数依然偏高的情况。 estimate q=4; run; 本例参数估计输出结果显示均值MU不显著(t的检验统计量的P值为0.9968),其他参数均显著(t检验统计量的P值均小于0.00001),所以选择NOINT选项,除去常数项,再次估计未知参数的结果,即可输入第二条ESTIMATE命令: estimate q=4 noint; run; 参数估计部分输出结果如图六所示: 图六 ESTIMATE命令消除常数项之后的输出结果 4
显然四个未知参数均显著。 拟合统计量的值 这部分输出五个统计量的值,由上到下分别是方差估计值、标准差估计值、AIC信息量、SBC信息量及残差个数,如图七所示: 图七 ESTIMATE命令输出的拟合统计量的值 系数相关阵 这部分输出各参数估计值的相关阵,如图八所示: 图八 ESTIMATE命令输出的系数相关阵 残差自相关检验结果 这部分的输出格式(图九)和序列自相关系数白噪声检验部分的输出结果一样。本例中由于延迟各阶的LB统计量的P值均显著大于a(a=0.05),所以该拟合模型显著成立。 图九 ESTIMATE命令输出的残差自相关检验结果 拟合模型的具体形式 ESTIMATE命令输出的拟合模型的形式 序列预测 forecast lead=5 id=time out=results; 5