时间序列分析 第三章 平稳时间序列分析(3)

2019-01-05 12:48

run; (1)判断该序列的平稳性与纯随机性 该序列的时序图如下(图f) 图f 时序图就是一个平面二维坐标图,通常横轴表示时间,纵轴表示序列取值。时序图可以直观地帮助我们掌握时间序列的一些基本分布特征。根据平稳时间序列均值、方差为常数的性质,平稳序列的时序图应该显示出该序列始终在一个常数值附近随机波动,而且波动的范围有界的特点。如果观察序列的时序图,显示出该序列有明显的趋势性或周期性,那它通常不是平稳序列。 由时序图显示过去74年中每年谷物产量数据围绕早0.8千吨附近随机波动,没有明显趋势或周期,基本可以看成平稳序列,为了稳妥起见,做了如下自相关图(图g) 图g 样本的自相关图我们可以知道该图横轴表示自相关系数,综轴表示延迟时期数,用水平方向的垂 11

线表示自相关系数的大小。我们发现样本自相关图延迟2阶之后,自相关系数都落入2倍标准差范围以内,自相关图显示该序列自相关系数一直都比较小,1阶开始控制在2倍的标准差范围以内,可以认为该序列自始自终都在零轴附近波动,这是随即性非常强的平稳时间序列。 纯随机性检验见下图:(图h) 图h 根据图h的检验结果我们知道,在各阶延迟下LB检验统计量的P值显著小于0.05,所以我们可以以很大的把握(置信水平>95%)断定这个拟合模型的残差序列属于非白噪声序列。 选择适当模型拟合该序列的发展。 如果序列平稳且非白躁声,选折适当模型拟合序列的发展 模型识别如下图(图i) 图i 假如某个观察值序列通过序列预处理,可以判定为平稳非白噪声序列,就可以利用ARMA模型对该序列建模。建模的基本步骤如下: A:求出该观察值序列的样本自相关系数(ACF)和样本偏自相关系数(PACF)的值。 B:根据样本自相关系数和偏自相关系数的性质,选择适当地ARMA(p,q)模型进行拟合。 C:估计模型中未知参数的值。 D:检验模型有效性。如果拟合模型不通过检验,转向步骤B,重新选择模型再拟合。 E:模型优化。如果拟合模型通过检验,仍然转向步骤B,充分考虑各种可能,建立多个拟合模型,从所有通过检验中选择最优模型。 F:利用拟合模型,预测序列的将来走势。 12

最后一条信息显示,在自相数迟阶数小于等于5,移动平均延迟阶数也小于等于5的所有ARMA(p,q)模型中,BIC信息量相对最小的是ARMA(1,0)模型,既AR(1)模型。它们的自相关系数都呈现出拖尾性和呈指数衰减到零值附近的性质。自相关系数是按负指数单调收敛到零;

利用拟合模型,预测该地区未来5年的谷物产量,预测结果如下图(图j) 由(2)可知,该模型为AR(1)模型;

图j

未来5年的谷物产量一次为0.7849,0.8518,0.8518,0.8518。

19. 现有201个连续的生产记录

data example19_1; input x@@; time=_n_; cards;

81.9 89.4 79.0 81.4 84.8 85.9 88.0 80.3 82.6 83.5 80.2 85.2 87.2 83.5 84.3 82.9 84.7 82.9 81.5 83.4 87.7 81.8 79.6 85.8 77.9 89.7 85.4 86.3 80.7 83.8 90.5 84.5 82.4 86.7 83.0 81.8 89.3 79.3 82.7 88.0 79.6 87.8 83.6 79.5 83.3 88.4 86.6 84.6 79.9 86.0 84.2 83.0 84.8 83.6 81.8 85.9 88.2 83.5 87.2 83.7 87.3 83.0 90.5 80.7 83.1 86.5 90.0 77.5 84.7 84.6 87.2 80.5 86.1 82.6 85.4 84.7 82.8 81.9 83.6 86.8 84.0 84.2 82.8 83.0 82.0 84.7 84.4 88.9 82.4 83.0 85.0 82.2 81.6 86.2 85.4 82.1 81.4 85.0 85.8 84.2 83.5 86.5 85.0 80.4 85.7 86.7 86.7 82.3 86.4 82.5 82.0 79.5 86.7 80.5 91.7 81.6 83.9 85.6 84.8 78.4 89.9 85.0 86.2 83.0 85.4 84.4 84.5 86.2 85.6 83.2 85.7 83.5 80.1 82.2 88.6 82.0 85.0 85.2 85.3 84.3 82.3 89.7 84.8 83.1 80.6 87.4 86.8 83.5 86.2 84.1 82.3 84.8 86.6 83.5 78.1 88.8 81.9 83.3 80.0 87.2 83.3 86.6 79.5 84.1 82.2 90.8 86.5 79.7 81.0 87.2 81.6 84.4 84.4 82.2 88.9 80.9 85.1 87.1 84.0 76.5

13

82.7 85.1 83.3 90.4 81.0 80.3 79.8 89.0 83.7 80.9 87.3 81.1 85.6 86.6 80.0 86.6 83.3 83.1 82.3 86.7 80.2 ; proc gplot data=example19_1; plot x*time=1; symbol c=red i=join v=star; run; proc arima data=example19_1; identify var=x nlag=24 minic p= (0:5) q=(0:5); run; estimate q=1; run; forecast lead=5 id=time out=results; run; proc gplot data=results; plot x*time=1 forecast*time=2 l95*time=3 u95*time=3/overlay; symbol1 c=black i=none v=start; symbol2 c=red i=join v=none; symbol3 c=green i=join v=none l=32; run; (1)判断该序列的平稳性与纯随机性 该序列的时序图如下(图k) x92919089888786858483828180797877760100time200300 图k 由时序图显示过去201个连续的生产记录数据围绕早84附近随机波动,没有明显趋势或周期,基本可以看成平稳序列,为了稳妥起见,做了如下自相关图(图l) 14

图l 时序图就是一个平面二维坐标图,通常横轴表示时间,纵轴表示序列取值。时序图可以直观地帮助我们掌握时间序列的一些基本分布特征。根据平稳时间序列均值、方差为常数的性质,平稳序列的时序图应该显示出该序列始终在一个常数值附近随机波动,而且波动的范围有界的特点。如果观察序列的时序图,显示出该序列有明显的趋势性或周期性,那它通常不是平稳序列。 样本的自相关图我们可以知道该图横轴表示自相关系数,综轴表示延迟时期数,用水平方向的垂线表示自相关系数的大小。我们发现样本自相关图延迟1阶之后,自相关系数都落入2倍标准差范围以内, 自相关图显示该序列自相关系数一直都比较小,1阶开始控制在2倍的标准差范围以内,可以认为该序列自始自终都在零轴附近波动,这是随即性非常强的平稳时间序列。 纯随机性检验见下图:(图m) 根据图m的检验结果我们知道,在各阶延迟下LB检验统计量的P值显著小于0.05,所以我们可以以很大的把握(置信水平>95%)断定这个拟合模型的残差序列属于非白噪声序列。 (2)如果序列平稳且非白躁声,选折适当模型拟合序列的发展 15


时间序列分析 第三章 平稳时间序列分析(3).doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:如何构建初中语文阅读教学的有效性论文(170302版)

相关阅读
本类排行
× 注册会员免费下载(下载后可以自由复制和排版)

马上注册会员

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: