19、f(x)?x23(12?x?11?x)?x26?11?x2?x23?11?x
?(?1)n?n??1??n?1?x,收敛域为?1?x?1. 3n?0?2?x?220、y?'1x?y?exx,通解为
11xxdx?Cee?xdx??? y?eexdx?C?????x?xx???
因为y(1)?e,e?e?C,所以C?0,故特解为y?exx.
21、证明:令f(x)?x3?3x?1,且f(?1)?3?0,f(1)??1?0,f(?1)?f(1)?0, x???1,1?,由连续函数零点定理知,f(x)在(?1,1)上至少有一实根.
22、设所求函数为y?f(x),则有f(2)?4,f'(2)??3,f''(2)?0. 由y''?6x?a,y''(2)?0得a??12,即y''?6x?12.
因为y''?6x?12,故y'?3x2?12x?C1,由y'(2)??3,解得C1?9. 故y?x?6x?9x?C2,由y(2)?4,解得C2?2. 所求函数为:y?x?6x?9x?2. 23、(1)S?3232?11220ydy?216y310?16
121(2)Vx???20 (1?2x)dx??(x?x)2?40?24、解:积分区域D为:1?y?u,y?x?u
uxu(1)F(u)???Df(x)d???1dx?f(x)dy?1'?1(x?1)f(x)dx;
(2)F(u)?(u?1)f(u),F(2)?(2?1)f(2)?f(2)?1.
'
36
2006年江苏省普通高校“专转本”统一考试高等数学参考答案
1、C 2、B 3、C 4、C 5、C 6、A 7、2 8、f(x0) 9、?1 10、1 11、exy(ysinx?cosx) 12、1
1?4313、原式?lim3x?112dydxyx't'txx?12?23
1??11?t2t2214、??t2,
dydx22(?dydx'xt)'1?22t1?t2?1?t4t2
1?t15、原式???1?lnxd(1?lnx)?23?3(1?lnx)2?C
??16、原式??20xdsinx?xsinx2220?2?2xsinxdx?02?24?2?2xdcosx
0??2??4?2xcosx20?2?cosxdx?20?4?2
y?y?17、方程变形为y'????,令p?则y'?p?xp',代入得:xp'??p2,分离变量得:
xx?x?y2??1pdp?2?x1dx,故
1p?lnx?C,y?xlnx?C?.
?n18、令g(x)?ln(1?x),g(0)?0,g(x)?'?(?1)n?0xdx?n?n?0(?1)nn?1xn?2,
?故f(x)??n?0(?1)nn?1xn?2,?1?x?1.
ij?1?3k1?2i?3j?k 119、n1?1,?1,1?、n2?4,?3,1?,l?n1?n2?34x?322'2直线方程为
?z?y?y?13?z?21'.
20、?xf,
?z?y?x2?2xf2?x(f21?2x?f22?y)?2xf2?2xf21?xyf22.
2'''''3''2'' 37
21、令f(x)?3x?x3,x???2,2?,f'(x)?3?3x2?0,x??1,f(?1)??2,f(1)?2,
3f(2)??2,f(?2)?2;所以fmin??2,fmax?2,故?2?f(x)?2,即3x?x?2.
22、y'?2x?y,y(0)?0
通解为y?(?2x?2)?Cex,由y(0)?0得C?2,故y??2x?2?2ex. 23、(1)S?4?2?2(8?x?x)dx?822643
(2)V???(y)2dy???(8?y)2dy?16?
0424、??f(x)dxdy?Dtt??f(x)g(t)???0??a?t0dx?f(x)dy?t?f(x)dx
00ttt?0t?0
(1)limg(t)?limt?0t?0?t0f(x)dx?0,由g(t)的连续性可知a?g(0)?limg(t)?0
t?0(2)当t?0时,g'(t)?f(t),
g(h)?g(0)h当t?0时,g(0)?lim综上,g'(t)?f(t).
'h?0?lim?h0f(x)dxh?limf(h)?f(0)
h?0h?0
2007年江苏省普通高校“专转本”统一考试高等数学参考答案
1、B 2、C 3、C 4、A 5、D 6、D 7、ln2 8、1 9、2? 10、
1yxy232
11、dx?dy 12、y''?5y'?6y?0
13、解:lime?x?1xtanxxyxx?0?lime?x?1x2xx?0?lime?12xxxx?0?limexx?02?12.
x14、解:方程e?e?xy,两边对x求导数得e?e?y'?y?xy',故
ydydx?y'?e?ye?xy.
又当x?0时,y?0,故
dydxx?0?1、
dydx22x?0??2.
38
15、解:?x2e?xdx???x2d(e?x)??x2e?x?2?xe?xdx??x2e?x?2?xd(e?x)
??xe2?x?2xe?x?2e122?x?C.
216、解:令x?sint,则??z?x1?xx?z?x?y''?2dx???cost2sin224tdt?1??4.
217、解:
?2f1?yf,
''2?2(f11?3?f12?x)?f2?y(f21?3?f22?x)
''22''''''''''?6f11?(2x?3y)f12?xyf''?f2
'18、解:原方程可化为y?'1x?y?2007x,相应的齐次方程y?1x?y?0的通解为y?Cx.可
设原方程的通解为y?C(x)x.将其代入方程得C'(x)x?C(x)?C(x)?2007x,所以
C(x)?2007,从而
'C(x)?2007x?C,故原方程的通解为y?(2007x?C)x. 又y(1)?2008,所以C?1,于是
所求特解为y?(2007x?1)x.(本题有多种解法,大家不妨尝试一下) 19、解:由题意,所求平面的法向量可取为
?ij1?1k1?(2,1,?3). 1n?(1,1,1)?(2,?1,1)?12故所求平面方程为2(x?1)?(y?2)?3(x?3)?0,即2x?y?3z?5?0.
?2cos?20、解:??Dx?ydxdy?122??D2?d?d??8?152?20d??0?d??28?20?3cos?d??3169.
21、解:(1)V??0?(1?x)dx?2;
1(2)由题意得
11?a10(1?y)dy?2?1323a(1?y)dy. 由此得(1?a)2?1??(1?a)2. 解得
a?1?()3.
422、解:f(x)?3ax?2bx?c,f(x)?6ax?2b.
'''由题意得f(?1)?0、f(1)?0、f(1)?2,解得a??1、b?3、c?9
'2'' 39
23、证明:积分域D:??a?y?b?y?x?b,积分域又可表示成D:??a?x?b?a?y?x
?bady?f(x)eyb2x?ydx???Df(x)e2x?y??badx?f(x)eax2x?ydy??baf(x)e2xdx?eax2ydy
??baf(x)e2x(e?e)dx?xa?ba(e3x?e2x?a)f(x)dx.
'24、证明:令F(x)?lnx?x?1x?1,显然,F(x)在?0,???上连续. 由于F(x)?x?1x(x?1)22?0,
故F(x)在?0,???上单调递增,
于是,当0?x?1时,即lnx?F(x)?F(1)?0,当x?1时,F(x)?F(1)?0,即lnx?x?1x?1x?1x?1,又x2?1?0,故(x2?1)lnx?(x?1)2;
,又x2?1?0,故(x2?1)lnx?(x?1)2.
综上所述,当x?0时,总有(x2?1)lnx?(x?1)2.
2008年江苏省普通高校“专转本”统一考试高等数学参考答案
1、B 2、A 3、D 4、C 5、A 6、B 7、0 8、3 9、(2,17) 10、?cosx?x?2x12x?c 11、? 12、??2,2?
13、lim(x??)3x?lim(1?x??2x)3x?lim(1?x??2xx)2?6,令y??x2,那么
lim(x??x?2x‘)3x?lim(1?x??1y)?y?6?1e6.
14、y(t)?sint,x(t)?1?cost,y(t)?cost,x(t)?sint. dydyy?,?,2?dxx(t)1?costdxx3’‘’‘’y(t)’sint2,,(t)x(t)?y(t)x(t),,‘’?xx?1‘(t)?3??1(1?cost)2.
15、?x3x?1x2dx??x?1x?13dx??d(x?1)dx??(x2?x?1)dx?lnx?1?C
?3?21?x?lnx?1?C.
116、?e01x2dx??e0112x2d(x2)?2?e011112x2?x2dx?2?e011111x2de2?2(x2ex210??e0111x2dx2)
40