第四章习题答案详解(7)

2019-02-15 23:03

使得f(c)?1. 2f(x)在[0,c]和[c,1]上分别满足拉格朗日中值定理条件,因此有:

f?(?1)?f(c)?f(0)1,即?2c,?1?(0,c)?(0,1),

c?0f?(?1)f(1)?f(c)1,即?2?2c,?2?(c,1)?(0,1),

?1?cf(?2)f?(?2)?从而

11?2c?2?2c?2. ?f?(?1)f?(?2)*10.设

f(x)在[0,1]上连续,在(0,1)内可导;若在(0,1)内有x1?x2,使f(x1?x2f(x1)?f(x2))?,证22明:在(0,1)内存在两点?1,?2(?1??2),使f'(?1)?f'(?2).

x1?x2f(x1)?f(x2))? 22x?x2x?x2得f(1)?f(x1)?f(x2)?f(1)

22x?xx?xf(x)在[x1,12],和[12,x2]上分别应用拉格朗日中值定理得,

22x1?x2x1?x2f()?f(x1)f()?f(x)1x1?x222),使得f?(?1)?存在?1?(x1, ?x2?x1x1?x22?x122 证:因为f(存在?2?(x1?x2,x2),使得f?(?2)?2f(x2)?f(x?xx1?x2)f(x2)?f(12)22 ?x2?x1x1?x2x2?22所以得f'(?1)?f'(?2),?1,?2?(0,1),?1??2. 11.求下列函数的极限

3 (1)limx?01?x?1e?1x16

133(1?x)21?x?1016116()解:lim=== limlimxxxx?0x?0x?030313(1?x)2?e16e16?1e16?163 31 / 49

垃圾虫制作

(2)limesinx?ex x?0sinx?x

esinx?exex(esinx?x解:limx?0sinx?x?lim?1)x?0sinx?x

当x?0时,(esinx?x?1)~(sinx?x)

所以limesinx?exx?0sinx?x?limx?0ex?1 sin1(3)xxlim?????2arctanx

sin11?1解:2xlimx?????2arctanx=xlimx0x1?x21?????2arctanx(0)=xlim???=lim=?2x???2x221?x2(4)xlimx2?lnx???xlnx

22x?1解:x?lnxxlim???xlnx(??)=xlimx2x2?1???lnx?1=xlim???x(lnx?1)(??)=xlim4x????lnx?2(?) =lim4x???1=xlim???4x???

x(5)lim(cotx?0x?1x)

解:lim(cotx?0x?1x)(???)=limxcosx?sinxxcosx?sinxx?0x?sinx=limx?0x2(00) =lim?xsinx?sinxx?02x?limx?02?0. (6)xlim???(??2arctanx)lnx

?2 解: xlim???(??2arctanx)lnx(0,?) ???2arctanx01?x2xlim???1(0)?xlim???1lnxxln2x=2xln2xxlim???(?1?x2)(?22lnx?1?2?)=?2xlimlnx?2lnx???2x(?xx?)??xlim???1 32 / 49

垃圾虫制作

=?2xlimlnx?1???x(??)=?21xlim???x?0.

1(7)xlim?0?(cotx)lnx

11解:lim(cotx)lnx(?0)=limelnxlncotxx?0?x?0??elimlncotxx?0?lnx

xlimlncotx?1(?csc2x)?0?lnx(?)?cotxxlim?0?1?xlim?x?0?sinx?1cosx??1 x1所以lim(cotx)lnxx?0?=e?1=

1e ?(8)lim??(cosx)2?x

x?2??lim(?2?x)lncosx解:lim2?x0?(cosx))(2?x)lncosx=limx???2x??(0??e=e

2x?2 而lim?lncosx??(?x)lncosx(0??)=lim?x??2x??1() 22??2?x1(?sinx)(??x)2=cosxsinxxlim???1??lim20?() ?x??cosx0(222?x)2(??=?lim2?x)(?1)sinx?(2?x)2cosx??x??sinx?0

2?所以lim2?x?(cosx)?e0?1

x??2(9)lim(tan?tan?2xx?14x)

???解:lim?lim(tan?x?lntan?x?124x)2tan4xx?1(tan4x)tan2x(1?)?limetanxln?e

x?1 33 / 49

垃圾虫制作

x4????4lntanxtanx??4(0)?lim4而lim(tanx?lntanx)(??0)?lim

x?1x?1x?1???024cotx?csc2x?222sec2?1??sincos2x2?44?lim??limsinx??1

x?11x?12??sin2x24??所以

cos?1lim(tanx)x?14?tanx2?1?e?1?

e2lim(arctanx)x (10)

x????解:lim(x???2?arctanx)(1)?limex???x?2xlnarctanx??ex???2limxlnarctanx?

x???limxln22lnarctanx(??0)?limx???2?arctanx1x?11?20x21arctanx1?x()?lim??lim(?)2x???x???101?xarctanx?2x???

所以lim(x???2?arctanx)?ex?2?

f(a?h)?2f(a)?f(a?h).

h?0h2f(a?h)?2f(a)?f(a?h)0f?(a?h)?f?(a?h)0()?lim() 解:limh?0h?002h0h2f??(a?h)?f??(a?h)?f??(a) =limh?0212.设f(x)存在二阶连续可导,求lim13.设f(x)连续可导,且f(0)?f?(0)?1,求limx?0f(sinx)?1.

lnf(x) 34 / 49

垃圾虫制作

解:因为x?0,f(x)?f(0)?1,lnf(x)?f(x)?1f(sinx)?f(0)limf(sinx)?1f(sinx)?1x?0lnf(x)?limx?0f(x)?1?limxx?0f(x)?f(0) xf(sinx)?f(0)?limsinxf?(0)x?0f(x)?f(0)?f?(0)?1x14.求下列函数的单调区间. (1)f(x)?x?sinx; 解:①f(x)的定义域为(??,??).

②f?(x)?1?cosx?0,且仅当x?(2k?1)?(k?0,?1,??????)时取等号,所以f(x)?x?sinx在(??,??)内单调增加。 (2)f(x)?x?x;

解:①f(x)的定义域为[0,??).. ②f?(x)?12x?1,令f?(x)?0,得驻点x?14, ③列表

x (0,1) 14 14 (4,??) f?(x) ? 0 ? f(x) ? ? ④结论:f(x)在??0,1?1?4??上单调增加,在(4,??)上单调减少。

(3)f(x)?2x1?x2; 解:①f(x)的定义域为(??,??).

x)?2(1?x2②f?()(1?x2)2,令f?(x)?0,得驻点x1??1,x2?1, ③列表

35 / 49

垃圾虫制作


第四章习题答案详解(7).doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:山西经济出版社小学信息技术2017最全第三册全册教案(word)

相关阅读
本类排行
× 注册会员免费下载(下载后可以自由复制和排版)

马上注册会员

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: