解:???1(17,5,4,13) 229?,?2??212?,?3??7311?的线性相关性。
285、确定向量组?1??5解答:
?1?2?3线性相关
21?,?2??313?,?3??101?的线性相关性。
286、确定向量组?1??1??1?121020??解答:∵??2??313?010?0
???101101?3?∴
?1?2?3线性相关
287、判断向量组?1??101?,?2??001?,?3??111?的线性相关性。
解答:???1?101??10??001????1?0 ?2?11???111?3???1?2?3线性无关
1?2???21???21a?,试确定a的值使R(A)?2。 288、设矩阵A??1?11?2a2???解答:a?1或a??2。
1?2???21???21a?,试确定a的值使R(A)?3。 289、设矩阵A??1?11?2a2???解答:a?1且a??2
?1?1?2?2290、求矩阵A???30??03?1?1?00解答:原式???03??03?2210?4?20?? 的秩。 6?11??001?10??0?40?,所以R?A??3 ?000?001??210??1?1??0?40??00???0?4100???001???03线性代数复习资料 35
?1?0291、求矩阵A???2??1解答:
121?215?1?? 的秩。 03?13??104?1?2221??11221??11????15?1??00000??02A???0?2?1?51??00?11?1? ?????00?22?2??0?21?51?????所以R?A??3?1412682??610421917?? 的秩。 292、求矩阵A???76341???353015205???00000????610421917?A??解答:76341????00000???(1、—1、0、0、0)。(简单说明理由)
,所以R?A??2
293、求作一个秩是4的方阵,其中包括三个行向量:(2、—1、1、0、0),(1、0、1、0、0),
?2?110??1010解答:?1?100??0001?0000?0??0?0? ?0?0??294、已知四元非齐次线性方程组Ax=b的r(A)=3,?1,?2,?3是它的三个解向量,且
?2??1??????0??9??1=??,?2+?3=??求该方程组的通解。
58??????1??6??????3?????9?解:Ax=0的基础解系为(?1-?2)+(?1-?3)=2?1-(?2+?3)=?, ?2????8???线性代数复习资料
36
??2??3?所以通解为:?0?????9???5??k??2?(k为任意实数)。 ???1????????8???x1?2x2?x3?4x4?0295、求解齐次线性方程组??x1?3x2?x3?4x4?0的基础解系。
??2x1?4x2?2x3?8x4?0?12?14?解答:A???12?14??13?14??~??0100???
?24?28????0000????x1????1?????4?? ?x?2??0??0??x??C1???C2?? ?3??1?x4????0???0???1????x1?2x2?x3?4x4?296、求解齐次线性方程组?0?x1?3x2?x3?4x4?0
??2x1?4x2?2x3?8x4?0?12?14??12?14?解答:A???13?14??~??0100??
??24?28????0000????x1??1?? ?x?????4??2??x??C?0??0??1??3??1??C2??0? ?x4????0?????1????x1?qx2?x3?297、当p,q为何值时,齐次线性方程组?0?x1?2qx2?x3?0有解,并求解。
??px1?x2?x3?0解:(1)当p?1且q?0时,仅有零解。)
??1 (2)当p=1,q为任意数时,有无穷多解,解为:k???0??(k为任意实数)。??1??线性代数复习资料 37
?1? (3)当q=0,p为任意数时,有无穷多解,解为:k??p?1??(k为任意实数)。
???1????x1?x2?x4?0298、a为何值时,齐次线性方程组??x2?ax3?x4?0有非零解,并求出其非零解。
?x1?x3?0??ax2?x3?x4?0??x1?x2?x4?0解:a=-1时,齐次线性方程组??x2?ax3?x4?0?x1?x3?0
??ax2?x3?x4?0为??x1?x3?0?x2?x3?x4?0
???1??0其非零解为k??1??????1??1?1??k2??(k1、k2为不全为零的实数)。???0
??0????1????x1?2x2?2x3?2x4?1299、当a,b为何值时,线性方程组??x2?x3?x4?1?x1?x2?x有解,并求解。
3?3x4?a??x1?x2?x3?5x4?b解:当a?0,b??2时,线性方程组??x1?4x4??1x,解为?2?x3?x4?1???1??0???4??1??1????????1?0??k1?1??k2?0?(k1,k2为任意实数)
。 ???0??????0??????1?????3x1?x2?x3?2x4?2300、当?为何值时,线性方程组??x1?5x2?2x3?x4??1?6x?3x有解,并求解。
?2x12?3x34???1???x1?11x2?5x3?4x4??4线性代数复习资料 38
:
?3x1?x2?x3?2x4?2?x?5x?2x?x??1?1234解:当?=2时,线性方程组?的同解线性方程组为:
?2x1?6x2?3x3?3x4???1???x1?11x2?5x3?4x4??4??x31?x?9x?9?163?7164516其通解为: ?x16x52?3?16x4?16??3??9??16?????9??k?7???16?5???16?5??1??k?(k1、k2为不全为零的实数)。 ?16?2?16??16??1??0????0??0??1????0???40301、求矩阵A??0??031??的特征值 。
??013??4??00解答:∵A??E?03??1??2????4???2
013??∴
?1?2?2??3?4
?300?302、求矩阵A???021??的特征值。
??012??3??00解答:∵A??E?02??1??3???2?1???
012??∴
?1?1?2??3?3
?56?303、求矩阵A??3???101???的特征值与特征向量。
?121??解答:
线性代数复习资料 39