③它可以判断点在直线上,即证若干个点共线的重要依据。 (5)公理4:平行于同一条直线的两条直线互相平行 (6)空间直线与直线之间的位置关系
① 异面直线定义:不同在任何一个平面内的两条直线 ② 异面直线性质:既不平行,又不相交。
③ 异面直线判定:过平面外一点与平面内一点的直线与平面内不过该店的直线是异面直线
④ 异面直线所成角:直线a、b是异面直线,经过空间任意一点O,分别引直线a’∥a,b’∥b,则把直线a’和b’所成的锐角(或直角)叫做异面直线a和b所成的角。两条异面直线所成角的范围是(0°,90°],若两条异面直线所成的角是直角,我们就说这两条异面直线互相垂直。 说明:(1)判定空间直线是异面直线方法:①根据异面直线的定义;②异面直线的判定定理 (2)在异面直线所成角定义中,空间一点O是任取的,而和点O的位置无关。 ②求异面直线所成角步骤:
A、利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选在特殊的位置上。 B、证明作出的角即为所求角 C、利用三角形来求角
(7)等角定理:如果一个角的两边和另一个角的两边分别平行,那么这两角相等或互补。 (8)空间直线与平面之间的位置关系
直线在平面内——有无数个公共点.
三种位置关系的符号表示:a?α a∩α=A a∥α
(9)平面与平面之间的位置关系:平行——没有公共点;α∥β
相交——有一条公共直线。α∩β=b
5、空间中的平行问题
(1)直线与平面平行的判定及其性质
线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行。
线线平行?线面平行
线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,
那么这条直线和交线平行。线面平行?线线平行
(2)平面与平面平行的判定及其性质 两个平面平行的判定定理
(1)如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行
(线面平行→面面平行),
(2)如果在两个平面内,各有两组相交直线对应平行,那么这两个平面平行。 (线线平行→面面平行),
(3)垂直于同一条直线的两个平面平行, 两个平面平行的性质定理
(1)如果两个平面平行,那么某一个平面内的直线与另一个平面平行。(面面平行→线面平行) (2)如果两个平行平面都和第三个平面相交,那么它们的交线平行。(面面平行→线线平行) 7、空间中的垂直问题
(1)线线、面面、线面垂直的定义
①两条异面直线的垂直:如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直。 ②线面垂直:如果一条直线和一个平面内的任何一条直线垂直,就说这条直线和这个平面垂直。
③平面和平面垂直:如果两个平面相交,所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(平面角是直角),就说这两个平面垂直。 (2)垂直关系的判定和性质定理 ①线面垂直判定定理和性质定理
判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面。 性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。 ②面面垂直的判定定理和性质定理
判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。
性质定理:如果两个平面互相垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面。 9、空间角问题
(1)直线与直线所成的角
①两平行直线所成的角:规定为0?。
②两条相交直线所成的角:两条直线相交其中不大于直角的角,叫这两条直线所成的角。
③两条异面直线所成的角:过空间任意一点O,分别作与两条异面直线a,b平行的直线a?,b?,形成两条相交直线,这两条相交直线所成的不大于直角的角叫做两条异面直线所成的角。 (2)直线和平面所成的角
?①平面的平行线与平面所成的角:规定为0。 ②平面的垂线与平面所成的角:规定为90?。 ③平面的斜线与平面所成的角:平面的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角。
求斜线与平面所成角的思路类似于求异面直线所成角:“一作,二证,三计算”。 在“作角”时依定义关键作射影,由射影定义知关键在于斜线上一点到面的垂线, 在解题时,注意挖掘题设中两个主要信息:(1)斜线上一点到面的垂线;(2)过斜线上的一点或过斜线的平面与已知面垂直,由面面垂直性质易得垂线。 (3)二面角和二面角的平面角
①二面角的定义:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面。
②二面角的平面角:以二面角的棱上任意一点为顶点,在两个面内分别作垂直于棱的两条射线,这两条射.....线所成的角叫二面角的平面角。
③直二面角:平面角是直角的二面角叫直二面角。
两相交平面如果所组成的二面角是直二面角,那么这两个平面垂直;反过来,如果两个平面垂直,那么所成的二面角为直二面角 ④求二面角的方法
定义法:在棱上选择有关点,过这个点分别在两个面内作垂直于棱的射线得到平面角 垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个面的交线所成的角为二面角的平面角 7、空间直角坐标系
(1)定义:如图,OBCD?D,A,B,C,是单位正方体.以A为原点, 分别以OD,OA,,OB的方向为正方向,建立三条数轴x轴.y轴.z轴。 这时建立了一个空间直角坐标系Oxyz.
1)O叫做坐标原点 2)x 轴,y轴,z轴叫做坐标轴. 3)过每两个坐标轴的平面叫做坐标面。
(2)右手表示法: 令右手大拇指、食指和中指相互垂直时,可能形成的位置。大拇指指向为x轴正方向,食指指向为y轴正向,中指指向则为z轴正向,这样也可以决定三轴间的相位置。
(3)任意点坐标表示:空间一点M的坐标可以用有序实数组(x,y,z)来表示,有序实数组(x,y,z) 叫做点M在此空间直角坐标系中的坐标,记作M(x,y,z)(x叫做点M的横坐标,y叫做点M的纵坐标,z叫做点M的竖坐标)
(4)空间两点距离坐标公式:d?(x2?x1)2?(y2?y1)2?(z2?z1)2
高一数学知识3 §1 算法初步
? 秦九韶算法:通过一次式的反复计算逐步得出高次多项式的值,对于一个
只要作n次乘法和n次加法即可。表达式如下:
n次多项式,
anxn?an?1xn?1?...?a1?????anx?an?1?x?an?2?x?...?x?a2?x?a1
例题:秦九韶算法计算多项式 3x6?4x5?5x4?6x3?7x2?8x?1 , 当 x?0.4 时,
需要做几次加法和乘法运算? 答案: 6 , 6
即: ?????3x?4?x?5?x?6?x?7?x?8?x?1
? 理解算法的含义:一般而言,对于一类问题的机械的、统一的求解方法称为算法,其意义具有广泛
的含义,如:广播操图解是广播操的算法,歌谱是一首歌的算法,空调说明书是空调使用的算法…
(algorithm)
1. 描述算法有三种方式:自然语言,流程图,程序设计语言(本书指伪代码). 2. 算法的特征:
①有限性:算法执行的步骤总是有限的,不能无休止的进行下去 ②确定性:算法的每一步操作内容和顺序必须含义确切,而且必须有输出,输出可以是一个或多个。
没有输出的算法是无意义的。
③可行性:算法的每一步都必须是可执行的,即每一步都可以通过手工或者机器在一定时间内可以
完成,在时间上有一个合理的限度
3. 算法含有两大要素:①操作:算术运算,逻辑运算,函数运算,关系运算等②控制结构:顺序结
构,选择结构,循环结构
? 流程图:(flow chart): 是用一些规定的图形、连线及简单的文字说明表示算法及程序结构的一种
图形程序,它直观、清晰、易懂,便于检查及修改。
注意:1. 画流程图的时候一定要清晰,用铅笔和直尺画,要养成有开始和结束的好习惯
2. 拿不准的时候可以先根据结构特点画出大致的流程,反过来再检查,比如:遇到判断框时,往往临界的范围或者条件不好确定,就先给出一个临界条件,画好大致流程,然后检查这个条件是否正确,再考虑是否取等号的问题,这时候也就可以有几种书写方法了。
3. 在输出结果时,如果有多个输出,一定要用流程线把所有的输出总结到一起,一起终结到结束框。
算法结构: 顺序结构,选择结构,循环结构 A A
p A Y N N p p Y
B A B Y N
?
直到型循环 当型循环
Ⅰ.顺序结构(sequence structure ):是一种最简单最基本的结构它不存在条件判断、控制转移和重复
执行的操作,一个顺序结构的各部分是按照语句出现的先后顺序执行的。
Ⅱ.选择结构(selection structure ):或者称为分支结构。其中的判断框,书写时主要是注意临界条件
的确定。它有一个入口,两个出口,执行时只能执行一个语句,不能同时执行,其中的A,B两语句
可以有一个为空,既不执行任何操作,只是表明在某条件成立时,执行某语句,至于不成立时,不执行该语句,也不执行其它语句。
Ⅲ.循环结构(cycle structure):它用来解决现实生活中的重复操作问题,分直到型(until)和当型(while)
两种结构(见上图)。当事先不知道是否至少执行一次循环体时(即不知道循环次数时)用当型循环。
? 基本算法语句:本书中指的是伪代码(pseudo code),且是使用 BASIC语言编写的,是
介于自然语言和机器语言之间的文字和符号,是表达算法的简单而实用的好方法。伪代
码没有统一的格式,只要书写清楚,易于理解即可,但也要注意符号要相对统一,避免引起混淆。如:赋值语句中可以用x?y ,也可以用 x?y ; 表示两变量相乘时可以用
“*”,也可以用“?”
Ⅰ. 赋值语句(assignment statement):用 ? 表示, 如:x?y ,表示将y的值赋给x,其中x是
一个变量,y是一个与x同类型的变量或者表达式.
一般格式:“变量?表达式” ,有时在伪代码的书写时也可以用 “x?y”,但此时的 “ = ”
不是数学运算中的等号,而应理解为一个赋值号。
注: 1. 赋值号左边只能是变量,不能是常数或者表达式,右边可以是常数或者表达式。“ = ”具有计算功能。如: 3 = a ,b + 6 = a ,都是错误的,而a = 3*5 – 1 , a = 2a + 3
都是正确的。2.一个赋值语句一次只能给一个变量赋值。 如:a = b = c = 2 , a , b , c =2 都是错误的,而 a = 3 是正确的.
例题:将x和y的值交换
p?xp?xx?y x?y , 同样的如果交换三个变量x,y,z的值 :
y?zy?pz?pⅡ. 输入语句(input statement): Read a ,b 表示输入的数一次送给 a ,b
输出语句(out statement) :Print x ,y 表示一次输出 运算结果x ,y 注:1.支持多个输入和输出,但是中间要用逗号隔开!2. Read 语句输入的只能是变量而不是表达式 3. Print 语句不能起赋值语句,意旨不能在Print 语句中用 “ = ”4. Print语句可以输出常量和表达式的值.5.有多个语句在一行书写时用 “ ; ”隔开.
例题:当x等于5时,Print “x = ”; x 在屏幕上输出的结果是 x = 5
Ⅲ.条件语句(conditional statement):
1. 行If语句: If A Then B 注:没有 End If 2. 块If语句: 注:①不要忘记结束语句End If ,当有If语句嵌套使用时,有几个If ,
就必须要有几个End If ②. Else If 是对上一个条件的否定,即已经不属于上面的条件,另外
Else If 后面也要有End If ③ 注意每个条件的临界性,即某个值是属于上一个条件里,还是属于下一个条件。④ 为了使得书写清晰易懂,应缩进书写。格式如下:
If A Then B Else C End If 例题: 用条件语句写出求三个数种最大数的一个算法.
Read a , b , c Read a , b , c If a≥b Then If a≥b and a≥c Then If a≥c Then Print a Print a Else If b≥c Then Else 或者 Print b Print c Else End If Print c Else End If If b≥c Then
Print b
Else 注:1. 同样的你可以写出求三个数中最小的数。 Print c 2. 也可以类似的求出四个数中最小、大的数
If End
End If
If A Then B Else If C Then D End If Ⅳ.循环语句( cycle statement): ? 当事先知道循环次数时用 For 循环 ,即使是 N次也是已知次数的循环 ? 当循环次数不确定时用While循环 ? Do 循环有两种表达形式,与循环结构的两种循环相对应. While A For I From 初值 to 终值 Step 步长 … … End While While循环 End For For 循环 Do While p Do … … Loop 当型Do循环 Loop Until p 直到型Do循环 说明:1. While循环是前测试型的,即满足什么条件才进入循环,其实质是当型循环,一般在解决有关问