?ab?设B???与A可以交换,则有?cd??11??ab??ab??11?AB?BA,即????=?????01??cd??cd??01??a?cb?d??aa?b? 则有??=??cdcc?d?????c?0,即??a?d?ak?则B????a,k?R?与A可以交换?0a?线性代数练习题 第二章 矩 阵
系 专业 班 姓名 学号 §2.3 方阵 一、f(x)?3?5x?x2,A???2?1?. ?,计算f(A)。?33??-5??12??5??7-5??00????????15???1512??00??2?1??2?1??7解:A2?????=???33???33???15?30??10f?A??3E?5A?A2??????03???15
?1???2?,且?(x)?x2?2x?3. 求?(?),?(?). 二、设????3??????1???1+2?3??0???????解:?(?)=???2?=4?4?3?5?????
??????3??9?6?3??12??????(?)?0三、已知A是n阶方阵,且满足A?A?E?A?A,计算A?E.
4235解:因为A4?A2?E?A3?A,则A5?A3?A?A4?A2即A?A?A?A?A,两边同时加E有A+E?A?A?E?A?A?054235423
6
四、设A???12??10??B?????下列等式是否成立。
?13??12?
(1) AB?BA;
(2) (A?B)2?A2?2AB?B2; (3) (A?B)(A?B)?A2?B2. 均不成立
五、举反例说明下列命题是错误的. (1) 若A2?O? 则A?O;
2(2) 若A?A? 则A?O或A?E;
(3) 若AX?AY? 且A?O? 则X?Y.
?01?(1)A???
00??(2)A???00?? ?01??01??11??10?(3)A???,X???,Y???
000000??????六、计算题
(1) ??1????10?0????; (2) ?0?1?(n?2) 1??00????nn?10??10??10??10?()解:1??????????类推可得??1???1???1??2?1??10??10???????1n?1????n2
7
2??10???10???10??????????(2)解:0?1?0?10?1????????0?00???00???00???0???????2??10??????0?1????0?00???0???322??201??2???2??2??201???10???33?2????2???0?1???0?3?00???0?2?0????3???3?2?类推可得 ?3????10???0?1????00????n线性代数练习题 第二章 矩 阵
系 专业 班 姓名 学号 §2.4 逆矩阵
一.选择题
1.设A是n阶矩阵A的伴随矩阵,则 [ B ] (A)A??AA?1 (B)A?A?n?1? (C)(?A)??A (D)(A)?0
?n???2.设A,B都是n阶可逆矩阵,则 [ C ] (A)A+B 是n阶可逆矩阵 (B)A+B 是n阶不可逆矩阵 (C)AB是n阶可逆矩阵 (D)|A+B| = |A|+|B|
3.设A是n阶方阵,λ为实数,下列各式成立的是 [ C ] (A)
?A??A (B)?A??A (C)?A??nA (D)?A??nA
4.设A,B,C是n阶矩阵,且ABC = E ,则必有 [ B ] (A)CBA = E (B)BCA = E (C)BAC = E (D)ACB = E 二、填空题:
??1?1?2?1.已知AB?B?A,其中B???21??,则A??1??????22.设??1?2?? 1????25??46????,则X = X?????13??21??213??? ?0?4???13.设A,B均是n阶矩阵,A?2,B??3,则2AB4n = ?
68
4.设矩阵A满足A?A?4E?0,则(A?E)?1? 三、计算与证明题:
2A?2E 21. 设方阵A满足A?A?2E?0,证明A及A?2E都可逆,并求A和(A?2E)?1 2?1答案: A?1?A?E2;(A?2E)?1?3E?A4. ?12. 设A??2?1??34?2??,求A 的逆矩阵A?1
??5?41????4A*??20???136???1A,|?|2;???324???2?答案:
??210??A?1?A*|A|??131 ??3??.?22???167?1??
?3. 设A??033??110??且满足AB?A?2B,求 B
???123??答案: B?(A?2E)?1A
???33?A?2E???233??1?10??,(A?2E)*??1???113???121????,?11?1??
??133??33??03?B?1???02??11310????1???3??123??.?11?1?????123????110??9
A?2E|?2;|
线性代数练习题 第二章 矩 阵
系 专业 班 姓名 学号 §2.5 转置矩阵与对称矩阵
一\\选择题 1、设C?(11,0,0,),A?E?CTC,B?E?2CTC,则AB? [ B ] 22T(A)E?CC (B)E (C)?E (D)0
2.设A为任意n阶矩阵,下列为反对称矩阵的是 [ B ] (A)A?A (B)A?A (C)AA (D)AA
3.设n阶矩阵A,B,C,满足ABAC = E,则 [ A ] (A)ABACTTTTTTTT?E (B)A2B2A2C2?E (C)BA2C?E (D)CA2B?E
?1?13??x1?????T二、设对称矩阵A???122?,x??x2?,计算xAx.
?320??x????3?解:xTAx??x1
三、已知???1,2,3? ???1,,?,设A??x2?1?13??x1? ????x3???122??x2??x12?2x22?2x1x2?6x1x3?4x2x3?320??x????3??11??23?T?,计算An.
解:An??T??T??T???T???T?n?1???T3n?1?
121321?3??2?3??1?????1?1??11?????3n?1?T??3n?1?2??1,,??3n?1?2??3??23??????3?
10