1?5(x2?y2)?5x?2x5(x2?y2)?(?5y)?2y??z????0 无旋 ?2222222?(x?y)(x?y)??R?3圆周的速度环量是??2???R2?1518? 5R?5圆周的速度环量是R?10圆周的速度环量是??2????52?10?
151??2????52?0?10?
516. 由速度环定义可得:r?a圆周线的速度环量是
????v?dl????2?2?0?a2r??v(1?)sin?????rd? 2rk??0??a2r?v(1?)cos??k??2k? ???2r??1?vz?vy(??) 02?y?z1?vx?vz(?)?0 2?z?x17. vx?x2y ? x ?vy??y2x ?y? vz?5 ? z ? 1?vy?vx12121?(??)y?(x2??)x?y(2??r) 22?x?y222 由stokes定理得圆x2?y2?1的速度环是:??2???zdA?2?A10?2?012(?r2)drd???? 23 负号说明为顺时针方向 18. vx?3y v y?2x v z??4
1?vy?vx11?)?(2?3?)? ?x??y?0 ?z?(2?x?y22x2y2椭圆??1 面A???3?2?6?
941?其速度环是??2J?2(??)?6???6?负号说明顺时针方向
219.( 不作要求)
点(,10)的速度由(0,1),(0,-1),(-1,0)处的点涡诱导产生的:
点(01,)对其诱导速度:vx??2??2? ?? vy???24??24??2??22??2?2??2???? vy???4??2??222??224??点(0,?1)对其诱导速度:vx??,0)对其诱导速度:vx?0 v y ? 点(?1???
2??2?4?3? 方向向上 ?点(,10)的速度为 v1x?0 v1y?4?3?同理得:点(01,)处速度: vx2?? vy2?0
4?3?,0)处 vx3?0 vy3?? 点(?1
4?3?点(0,?1)处: vx? vy?0
4?四个点涡的涡旋惯性中心为: x0?(1?0?1?0)?(0?1?0?1)??0 y0??0
4?4?3?3? ?四个点涡绕(0,0)点做半径为1的圆周运动,其角速度为4??14?
第六章
1. (a)??kxy vx?????1?v?v?kx,vy????ky, ?z=(y-x)=0 无旋有势 ?y?x2?x?y????1?v?v?-2y,vy????2x, ?z=(y-x)=0 无旋有势?y?x2?x?y?b???x2?y2 vx??c??
?klnxy2 vx???2k??k?,vy????, ?yy?xx1?v?v1k2k ?z=(y-x)=(2+2)?0 有旋无势2?x?y2xy
?d???k?1??vr??1??sin? ?2????1??1?k(1?2)cos?,v?????ksin?(1?2) r??r?rr?z?(2.
11?(rv?)?vr?)?0,无旋有势
2r?rr????x2?y2?x
??????2x?1 积分??2xy?y?f(x) ??x?y???2y?f'(x) ?x由于vx?vy??????0?f(x?) c????2y f'(x)?y?x???2xy?y?c
3. vx?xy?y vy?x?yx vz?0
2222?vx?vy??2xy?2xy?0平面不可压 ?x?y?x??y?0 ?z?(1?vy?vx122?)??2x?y?(x?2y)??0有旋无势 ??2?x?y2?存在流函数而不存在速度势
??11?vx?x2y?y2积分??x2y2?y3?f(x) ?y23??=xy2?f'(x)??vy?xy2?x2 ?xx3f'(x)??x,?f(x)??
3212213x3??xy?y?
2334.
?x??x?0121?Vy?Vx ?z?(?)?0无旋,存在速度势,2?x?y1312??x2y?x2?y3?y2?c
?????y Vy??x ?x?y??1????x积分???x2?f(y)?f'(y)?vx?y?x2?y11????x2?y2?c
225. 速度分布:Vx?f(y)?12y?c 26. (1) ??2y?5252y?x?3x?c 22无旋,有势流
(2)??x?x2?y2
无旋,有势流
ccos? r??ccos?1??csin?vr???=?????f(r),
?rr2r??r??csin??=?f'(r) 2?rr7. ??v?=
??csin???csin???2=?,f'(r)?0?f(r)?c ???? r??r?r?8.??x?x2?y2
vx???????2x?1 ??2y vy???x?y积分???2xy?f(y)????f(y)??2x??x?y?f(y)??1?yf(y)??y?c
????2y?x????2x?1?y????2xy?y?c
2点(?2,4)处速度v12?vx2?vy2?(?2?4)2???2?(?2)?1??73
点(3,5)处速度v22?vx2?vy2?(?2?5)2?(?2?3?1)2?149
由伯努利方程: p1?1212?v1=p2??v2 2211?p1?p2??(v22?v12)???16?38?(pa)
229.
r12?(x?a)2?y2 222r2?(x-a)?y
(采用镜像法),在(a,0)的对称位置虚设一个等强度的点涡,则可形成y轴处的固壁。
??lny2?(x?a)2(顺时针) 2??lny2?(x?a)2(逆时针) 位于(a,0)点的点涡诱导流函数为 ?2??2?(1)位于(-a,0)点的点涡诱导流函数为 ?1?? 流函数为
???2???2?lny2?(x?a)2??22?ln??(x?a)?y????lny2?(x?a)22??22??ln?(x?a)?y????1?21?2
1111?????22?2122?222?2122?2????????(2) vx??(x?a)?y?(x?a)?y?2y?(x?a)?y?(x?a)?y?2y???????2????2???y2???????yy??2222?2???(x?a)?y(x?a)?y? vy??????x?ax?a? ????2222?x2??(x?a)?y(?xa)??ya? 方向向下,证明y轴为一固体壁面
?(y2?a2)1?vy2(无穷远处速度为0) 2 当x?0时,vx?0 vy??由伯努利方程:p??0?p?1a2?21 令p??0,则p?-? 22222?(y?a)10.