上海大学高数第八章无穷级数(2)

2019-03-10 21:33

典型例题:

例1:判别下列级数的敛散性: (1)

11?3?13?5???1?2n?1??2n?1??? (2)1??2?2?3?????3?2?5???????n?22??2n?1????

?(3)???11?2n?n?1?n??

解(1)

na1?11?n?2??2n?1?2n?1??,s1?1?n??ak?k?12??1?2n?1??limn??s1?1?1n?limn??2??1?2n?1???2

?所以级数其和为1n?1???2n-1??2n?1?收敛,2。

解(2)

2a??2?n?n?2n?1??limn??a?n?1n?limn????2n?1???4?0?

所以级数??n?1?n?2?2n?1??发散。

解(3)

?因为公比q?1所以等比级数?12?12n收敛;n=1? 因为p=1?112所以级数?

n?n发散;1?故级数??1?n?1?1?2n?n?发散。?

例2:判别以下级数的敛散性:

?n(1)?n4n?14?? (2)2???1??1?2nn,n?13n, (3)?, (4),n?1nnn?lnnn?13

解(1)

n44un?4n因为??limun?1n??u?lim?n?1?4n1nn??4n?1?n4?4?1?4

由比值判别法所以级数?n4n收敛。n?1解(2)

n?u2???1?31n?3n?

3n因为?n?收敛(公比q=1<1)n=1313?由比较判别法所以级数?2+?-1?n

n收敛。n=13?5)?1pn?2n?lnn? ( 。解(3)

1?n1nnun?n因为lim=1,调和级数?发散n??1nnn=1n

n?1由比较法极限形式所以级数?n发散。n=1nn1解(4)

2nun?lnn3

因为?=limnun=limn??n??23lnnn=2>1

由根值判别法解(5)

所以级数?n=1?23nlnnn发散。f?x??

1x?lnx?p因为?+?1x?lnx?2dx?p1?1?p??lnx?pp?1??21?,p?1p?1????p?1??ln2??,p?1 ?发散由积分判别法 例3:若?所以级数?n=2?1n?lnn?,在p?1时收敛,在p?1时发散。?a?ann=1?n?0?收敛,试证:级数

(1)?an,2n=1(2)?n?1??ann,a(3)?n,n?11?an?(4)??an?an?1?n?1? 收敛。证(1)

因为?an收敛,n=1则liman?0n??即存在N2当n>N时有0?an?1所以an?an由比较判别法证(2)

级数?an2收敛。n?1?an11?1???a??ann??nn22?n2?1?1? 所以??2?an?收敛?n?12?n证(3)

?1因为?2n?1n所以?n?1???p?2?1?与?an收敛n?1?ann收敛。

因为an?0,

a故n?an1?anan收敛。?n?11?an?由?an收敛n?1?

所以证(4) 因为???a,?ann?1n?1n?1 收敛,所以??an?an?1?收敛。n?1?例4:判别以下级数的审敛性:

?xn?11??????,其中?xn?为递增有界的正数列;xn?1?n?1???2???n?1?1n0xdx;1?x?3??en!;nnn?1?n?4??1a?0?。n?1?an?1?

解(1)

因为正数列?xn?递增有界,即0?x1?x2???xn?xn?1??,所以?xn?收敛。且有0?un?1?对级数?vn,n?1?xnx?xx?x?n?1n?n?1n?vnxn?1xn?1x1sn??k?1n即un?vnxk?1?xk11??xn?1?x1?,limsn?lim?xn?1?x1?存在

n??n??xx1x11所以?vn收敛n?1??x?由比较判别法知:级数?un???1?n?收敛。xn?1?n?1n?1???解(2)

1x211设un??dx??nxdx???vn3301?x3n2n2??13?? 级数?vn??3收敛?p??1?22??n?1n?1n1n0

由比较判别法知:级数?un???n?1n?1??1n0xdx收敛。1?x解(3)

en?n?1?!nnun?1e因为??lim?lim??lim?1n?1nnn??un??n??en!?n?1??1?n?1???n?由比值判别法知:在?=1时失效,因为改用其它方法判别。enn!设un?nnnn???1????1? 因为数列??1+??是单调上升且趋于e的,即对一切n有?1???e?n????n???ue从而有n?1??1由此得出un?1?unnun?1??1???n??enn!所以limun?u1?0故级数?n发散。n??n?1n

解(4)

1分以下三种情况讨论:n1?a1111?a?1un??limun??0n??1?122un?2?0?a?13?a?1

级数??1发散。n1?an?1?1lim?limun?1?0n??1?ann??11un??1?anan1因为0??1a1级数?发散。n1?an?1?

?11级数?n收敛,故级数?收敛。na1?an?1n?1例5:判别以下级数的敛散性:

?1??n?1???1?2n?1n?1?2??n?1???1?n?1nn?2?3??n?1???1?nn?lnnnn?1 ?4????1??n?1?!n?1?n

解(1)

?n?1???1?2n?1n?1???n?1?1n?1n?12?n2?11因为lim?1,级数?n??1n?1nn?p?1?发散所以级数???1?n?11n?12发散,???1?n?1?n?11n?1122非绝对发散。

又因为lim1n?12n???0,1n?1?2?n?1?n?1?12?1由莱布尼兹判别法知:级数???1?n?1收敛n?1所以级数???1?n?1?n?1条件收敛。n?121

解(2)

?n?1???1???1?nn?2nn?1n?2n?1?1111??因为?,级数收敛公比q??1???nnnn?2222??n?1? 由比较判别法知:?级数?n?1??1?n?1n?2n收敛

所以级数?n?1??1?n?1nn?2绝对收敛。

解(3)

1设un?,n?lnn??n?lnnn?1???1?n??1,n?1n?lnn?11因为limn?lnn?lim?1,n??n??1lnn1?nn?n?11级数?发散?p?1?,n?1n???1?非绝对收敛,1由比较法极限形式知:级数?发散,级数?n?1n?lnnn?1n?lnn11又因为limun?lim?limn?0n??n??n?lnnn??lnn1?n?1?ln?1???1??n?lnn????n?1??ln?n?1??11??n?un?1?un?????0n?1?lnn?1n?lnnn?1?lnn?1n?lnn????n?1??ln?n?1?n?lnn?????????????????所以un?1?un由莱布尼兹判别法知:交错级数?所以级数???收敛,n?lnnn?1??1?n??1?nn?1n?lnn条件收敛。解(4)

??nn?1nn?1????un,??1???n?1?!n?1?n?1?!n?1n?1?n?n?n?1???n?1?!?lim?n?1??n?1??e?1,u??limn?1?lim??n?1n??un???n?2?!n??nn??n?n?2?nnn?22nn?1由比较判别法知:级数???1?非绝对收敛,n?1!??n?1由limun?1unn???1可知:当n足够大时,un?1un?1,即un?1?un,nn?1所以级数???1?发散。?n?1?!n?1?n所以limun?0,n??从而limun?0,n??

例6:判别以下级数的敛散性:

?1???1??nn?2n???1??n,?2??sin???n?1n?a22?,?3????1?n?1?n?1an?a?0?n

?4?111111???????aa?1a?2a?3a?4a?5n?a?0?解(1)

??1?不单调,所以不能利用莱布尼兹判别法来判敛。因为un?nn???1?nnnn???1n??1?????1??1n???1??? 但是un? ??n222n?1n?1n?1n???1?nn????1?n?1???1易知?2与?2均收敛,故?也收敛。nn?1n?1n?2n?2n?2n???1?注:本题说明交错级数的莱布尼兹判别法是交错级数收敛的充分条件。不满足该条件的交错级数也有可能收敛,本题

即为一例。 解(2)

sin?n?a?22??sin?n??????a2n?n?a?n????1?sin??n2?a2?n22?因为当n充分大时,0?

?a2所以n2?a2?n?a2un?sin?sin22n?a?n???2,???而正弦函数sinx在?0,?内是单调增加的,?2??a2?n?1???n?1?n2?un?1,收敛,且limun?limsinn??n????a2n?a?n22

?0,由莱布尼兹判别法知:级数???1?sinn?1?a2n2?a2?n即?sin?n2?a2收敛。n?1??解(3)

设un???1?n?1an,n?limn?1n??un?1n?lim?a?a,n??n?1un2?当a?1时,级数???1?n?1?n?11?当a?1时,级数???1?

n?1?an绝对收敛;nan发散;n

3?当a??1时,级数???1?n?1n?1??1?nn1???发散;n?1n?4?当a?1时,级数?n?1???1?nn?1条件收敛。


上海大学高数第八章无穷级数(2).doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:辅助运输管理规定

相关阅读
本类排行
× 注册会员免费下载(下载后可以自由复制和排版)

马上注册会员

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: