b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想。
2.3.2平面与平面垂直的判定
1、二面角的概念:表示从空间一直线出发的两个半平面所组成的图形
A
梭 l β
B
α 2、二面角的记法:二面角α-l-β或α-AB-β
3、两个平面互相垂直的判定定理:一个平面过另一个平面的垂线,则这两个平面垂直。 2.3.3 — 2.3.4直线与平面、平面与平面垂直的性质 1、定理:垂直于同一个平面的两条直线平行。
2性质定理: 两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。
本章知识结构框图
平面(公理1、公理2、公理3、公理4) 空间直线、平面的位置关系 直线与平面的位置关系 平面与平面的位置关系 第三章 直线与方程
3.1直线的倾斜角和斜率 3.1倾斜角和斜率
1、直线的倾斜角的概念:当直线l与x轴相交时, 取x轴作为基准, x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角.特别地,当直线l与x轴平行或重合时, 规定α= 0°. 2、 倾斜角α的取值范围: 0°≤α<180°. 当直线l与x轴垂直时, α= 90°. 3、直线的斜率:
一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k表示,也就是 k = tanα
?当直线l与x轴平行或重合时, α=0°, k = tan0°=0; ?当直线l与x轴垂直时, α= 90°, k 不存在.
由此可知, 一条直线l的倾斜角α一定存在,但是斜率k不一定存在. 4、 直线的斜率公式:
给定两点P1(x1,y1),P2(x2,y2),x1≠x2,用两点的坐标来表示直线P1P2的斜率:
斜率公式: k=y2-y1/x2-x1
3.1.2两条直线的平行与垂直
1、两条直线都有斜率而且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,那
么它们平行,即
注意: 上面的等价是在两条直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不成立.即如果k1=k2, 那么一定有L1∥L2 2、两条直线
PP12??x2?x2???y2?y1?22都有斜率,如果它们互相垂直,那么它们的斜率互
为负倒数;反之,如果它们的斜率互为负倒数,那么它们互相垂直,即
3.2.1 直线的点斜式方程
(x0,y0),且斜率为k 1、 直线的点斜式方程:直线l经过点P02、、直线的斜截式方程:已知直线l的斜率为k,且与
y?y0?k(x?x0)
y轴的交点为(0,b) y?kx?b
其中
3.2.2 直线的两点式方程
1、直线的两点式方程:已知两点y-y1/y-y2=x-x1/x-x2
2、直线的截距式方程:已知直线l与
P1(x1,x2),P2(x2,y2)(x1?x2,y1?y2)
x轴的交点为A(a,0),与y轴的交点为B(0,b),其中
a?0,b?0
3.2.3 直线的一般式方程
1、直线的一般式方程:关于x,2、各种直线方程之间的互化。
y的二元一次方程Ax?By?C?0(A,B不同时为0)
3.3直线的交点坐标与距离公式 3.3.1两直线的交点坐标
1、给出例题:两直线交点坐标
L1 :3x+4y-2=0 L1:2x+y +2=0 解:解方程组
所以L1与L2的交点
?3x?4y?2?0 得 x=-2,y=2 ?2x?2y?2?0?坐标为M(-2,2)
3.3.2 3.3.3
两点间距
点到直线的距离公式
离
两点间的距离公式 1.点到直线距离公式: 点P(x0,y0)到直线l:Ax?By?C?0的距离为:d?Ax0?By0?CA?B22
2、两平行线间的距离公式:
已知两条平行线直线l1和l2的一般式方程为l1:Ax?By?C1?0,
l2:Ax?By?C2?0,则l1与l2的距离为d?第四章
4.1.1 圆的标准方程
1、圆的标准方程:(x?a)2C1?C2A?B22圆与方程
?(y?b)2?r2
圆心为A(a,b),半径为r的圆的方程
2、点M(x0,y0)与圆(x?a)(1)(x0(3)(x02?(y?b)2?r2的关系的判断方法:
?a)2?(y0?b)2>r2,点在圆外 (2)(x0?a)2?(y0?b)2=r2,点在圆上 ?a)2?(y0?b)2 4.1.2 圆的一般方程 1、圆的一般方程:x2?y2?Dx?Ey?F?0 2、圆的一般方程的特点: (1)①x2和y2的系数相同,不等于0. ②没有xy这样的二次项. (2)圆的一般方程中有三个特定的系数D、E、F,因之只要求出这三个系数,圆的方程就确定了. (3)、与圆的标准方程相比较,它是一种特殊的二元二次方程,代数特征明显,圆的标准方程则指出了圆心坐标与半径大小,几何特征较明显。 4.2.1 圆与圆的位置关系 1、用点到直线的距离来判断直线与圆的位置关系. 设直线l:圆C:x?y?Dx?Ey?F?0,圆的半径为r,圆心(?ax?by?c?0,到直线的距离为d,则判别直线与圆的位置关系的依据有以下几点: (1)当d?r时,直线l与圆C相离;(2)当d?r时,直线l与圆C相切; (3)当d?r时,直线l与圆C相交; 22DE,?)224.2.2 圆与圆的位置关系 两圆的位置关系. 设两圆的连心线长为l,则判别圆与圆的位置关系的依据有以下几点: (1)当l?r1?r2时,圆C1与圆C2相离;(2)当l?r1?r2时,圆C1与圆C2外切; (3)当|r1?r2|?l?r1?r2时,圆C1与圆C2相交; (4)当l?|r1?r2|时,圆C1与圆C2内切;(5)当l?|r1?r2|时,圆C1与圆C2内含; 4.2.3 直线与圆的方程的应用 1、利用平面直角坐标系解决直线与圆的位置关系; 2、过程与方法 用坐标法解决几何问题的步骤: 第一步:建立适当的平面直角坐标系,用坐标和方程表示问题中的几何元素,将平面几何问题转化为代数问题; 第二步:通过代数运算,解决代数问题; 第三步:将代数运算结果“翻译”成几何结论. RMOPQM'y4.3.1空间直角坐标系 1、点M对应着唯一确定的有序实数组(x,y,z),x、y、z分别是P、Q、R在x、y、 z轴上的坐标 2、有序实数组(x,y,z),对应着空间直角坐标系中的一点 x3、空间中任意点M的坐标都可以用有序实数组(x,y,z)来表示,该数组叫做点M在此空间直角坐标系中的坐标,记M(x,y,z),x叫做点M的横坐标,y叫做点M的纵坐标,z叫做点M的竖坐标。 z4.3.2空间两点间的距离公式 1、空间中任意一点P1(x1,y1,z1)到点P2(x2,y2,z2)之间的距离公式 P1P2P1P2?(x1?x2)?(y1?y2)?(z1?z2) 222N1xOM1MM2HN2yN高中数学 必修3知识点 第一章 算法初步 1.1.1 算法的概念 1、算法概念: 在数学上,现代意义上的“算法”通常是指可以用计算机来解决的某一类问题是程序或步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成. 2. 算法的特点: (1)有限性:一个算法的步骤序列是有限的,必须在有限操作之后停止,不能是无限的. (2)确定性:算法中的每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当是模棱两可. (3)顺序性与正确性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后继步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题. (4)不唯一性:求解某一个问题的解法不一定是唯一的,对于一个问题可以有不同的算法. (5)普遍性:很多具体的问题,都可以设计合理的算法去解决,如心算、计算器计算都要经过有限、事先设计好的步骤加以解决. 1.1.2 程序框图 1、程序框图基本概念: (一)程序构图的概念:程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形。 一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文字说明。 (二)构成程序框的图形符号及其作用 程序框 起止框 输入、输出框 处理框 判断框 分别写在不同的用以处理数据的处理框内。 判断某一条件是否成立,成立时在出口处标明“是”何需要输入、输出的位置。 赋值、计算,算法中处理数据需要的算式、公式等的。 表示一个算法输入和输出的信息,可用在算法中任名称 功能 表示一个算法的起始和结束,是任何流程图不可少