【教学重点】圆的认识,通过动手操作,理解直径与半径的关系,认识圆的特征。 【教学难点】画圆的方法,认识圆的特征。 【教学用具】圆规、直尺 【教学过程】 一、复习。 1、我们以前学过的平面图形有哪些?这些图形都是用什么线围成的?简单说说这些图形的特征? 出示圆片图形:(1)圆是用什么线围成的?(圆是一种曲线图形)
(2)举例:生活中有哪些圆形的物体?
二、认识圆的特征。
1、学生自己在准备好的纸上画一个圆,并动手剪下。 2、动手折一折。
(1)折过2次后,你发现了什么?(两折痕的交点叫做圆心,圆心一般用字母O表示)
(2)再折出另外两条折痕,看看圆心是否相同。 3、认识直径和半径。
(1)将折痕用铅笔画出来,比一比是否相等? ( 2)观察这些线段的特征。(圆心和圆上任意一点的距离都相等)
(3)板书:通过圆心并且两端都在圆上的线段,叫做直径。连接圆心到圆上任意一点的线段,叫做半径。
4、讨论:
(1)什么叫半径?圆上是什么意思?画一画两条半径,量一量它们的长短,发现了什么?
(2)什么叫直径?过圆心是什么意思?量一量手上的圆的直径的长短,你发现了什么?
(3)小结:在同一个圆里,有无数条直径,且所有的直径都相等。 在同一个圆里,有无数条半径,且所有的半径都相等。 5、直径与半径的关系。
学生独立量出自己手中圆的直径与半径的长度,看它们之间有什么关系?然后讨论测量结果,找出直径与半径的关系:在同一个圆里, d=2r
6、巩固练习:课本58“做一做”的第1-4题。 三、学习画圆。
1、介绍圆规的各部分名称及使用方法。
2、引导学生自学用圆规画圆,并小结出画圆的步骤和方法。 四、巩固练习。
1、画一个半径是2厘米的圆。再画一个直径是5厘米的圆。 2、判断,并说为什么。
(1)半径的长短决定圆的大小。 ( ) (2)圆心决定圆的位置。 ( ) (3)直径是半径的2倍。 ( ) (4)圆的半径都相等。 ( ) 3、思考题:在操场如何画半径是5米的大圆? 五、布置作业。 课本P60第1-4题。
【板书设计】
圆的认识
在同一个圆里,有无数条直径,且所有的直径都相等。 在同一个圆里,有无数条半径,且所有的半径都相等。 直径等于半径的2倍,半径等于直径的1/2, d=2r 【教后反思】
本堂课是对圆的初步认识,概念较多,也能会较乏味。为了避免学生学得枯燥、没兴趣,我采用了课件与动手操作相结合的方式进行教学,充分调动起学生的学习积极性,并让学生在动手操作的基础上,自主探索和发现圆的有关特性。但在教学“画圆”时,我的讲授部分似乎就多了一些,如能让学生自己来讲述、演示画圆的步骤,有何不足在相互补充的话,这样的教学似乎会更好一些。
29 第二课时
教学内容:轴对称图形 教学目标:
1、在前面所学得成轴对称的平面图形的基础上,教学认识圆的对称轴。 2、使学生认识到圆是轴对称图形,且对称轴有无数条。
3、培养学生动手操作能力,在操作中加深对所学平面图形的对称轴的认识 教学重点:圆的对称轴。 教学难点:画对称轴的方法。 教学过程:
一、观察以前认识对称图形。
1、举例说出轴对称的物体。如:蝴蝶 、飞机、门窗、圆中的钟面、月饼等。想一想这些图形有什么特点?
2、观察、概括。
如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。折痕所在的这条直线直线叫做对称轴。
二、教学认识圆的对称轴
1、出示例3: 你能分别画出下面两个圆的对称轴吗?你能画出几条?
2、学生尝试画出圆的对称轴,观察、再动手折一折,你发现了什么? 3、小结:圆有无数条对称轴。每一条直径所在的位置都是它的对称轴。 三、巩固练习。
1、在方格上画对称轴,并量出对称轴两边相对的点到对称轴的距离。
2、小结:对称轴两侧相对点到对称轴的距离相等。
3、从上面的图形可以看出,正方形、长方形、等腰三角形和圆都是轴对称图形,这些对称图形各有几条对称轴?画出来。
4、下面的图形是轴对称图形吗?它们各有几条对称轴? 长方形 等边三角形 等腰三角形 正方形 圆 环形 四、总结:
今天我们学习了哪些知识? 五、布置作业: 练习十四第5—9题。
30 第三课时
教学内容:圆的周长
教学目标:1、使学生理解圆的周长和圆周率的意义,理解并掌握圆的周长公式,并能正确计算圆周长。
2、培养学生的观察、比较、概括和动手操作的能力。 3、对学生进行爱国主义教育。
教学重点:圆的周长和圆周率的意义,圆周长公式的推导过程。 教学难点:圆周长公式的推导过程。 教学过程:
一、认识圆的周长。 1、出示一个正方形。
这是什么图形?什么是正方形的周长?怎样计算?这个正方形周长与边长有什么关系? C=4a
2、什么是圆的周长?
让学生上前比划,圆的周长在那?那一部分是圆的周长? 得出定义:围成圆的曲线的长叫做圆的周长。 二、圆周长的公式推导。 1、探索学习。
(1)你可以用什么办法知道一个圆的周长是多少? (2)学生各抒己见,分别讨论说出自己的方法:
A、用一根线,绕圆一周,减去多余的部分,再拉直量出它的长度, 即可得出圆的周长。
B、把圆放在直尺上滚动一周,直接量出圆的周长。 C、用一条小线的一端栓上小球在空中旋转。这样你能知道空中出现的圆的周长吗? 用滚动,绳测的方法可测量出圆的周长,但是有局限性。今天我们来探讨出一种求圆周长的普遍规律。
2、动手实践。
(1)4人小组,分别测量学具圆,报出自己量得的直径,周长,并计算周长和直径
的比值。
(2)引生看表,问你们看周长与直径的比值有什么关系? (3)你有办法验证圆的周长总是直径的3倍多一点吗? (4)阅读课本P63,介绍圆周率,及介绍祖冲之。 3、解决新问题。
(1)教学例1 圆形花坛的直径是20m,它的周长是多少米?小自行车车轮的直径是50m,绕花坛一周车轮大约转动多少周?
第一个问题: 已知 d = 20米 求:C = ? 根据 C =πd
20×3.14=62.8(m)
第二个问题: 已知: 小自行车d = 50cm 先求小自行车C = ? c=πd 50cm=0.5m 0.5×3.14=1.57(m)
再求绕花坛一周车轮大约转动多少周? 62.8 ÷1.57=40(周)
答:它的周长是62.8米。绕花坛一周车轮大约转动40周。 三、巩固练习。
1、求下列各题的周长。书本65页练习十五的第1题 2、判断正误。
(1)圆的周长是直径的3.14倍。 ( ) (2)在同圆或等圆中,圆的周长是半径的6.28倍。 ( ) (3)C =2πr =πd ( ) (4)半圆的周长是圆周长的一半。 ( ) 四、作业。
P64 做一做 ,练习十五的第5、8题
31 第四课时
教学内容:圆的周长(2)
教学目标:1、通过教学使学生学会根据圆的周长求圆的直径、半径。 2、培养学生逻辑推理能力。 3、初步掌握变换和转化的方法。 教学重点:求圆的直径和半径。
教学难点:灵活运用公式求圆的直径和半径。 教学过程: 一、复习。 1、口答。
4π 2π 5π 10π 8π 2、求出下面各圆的周长。
C=πd c=2πr 3.14×2 2×3.14×4 =6.28(厘米) =8×3.14 =25.12(厘米) 二、新课。
1、提出研究的问题。
(1)你知道Π表示什么吗?
(2)下面公式的每个字母各表示什么?这两个公式又表示什么? C=πd C=2πr
(3)根据上两个公式,你能知道:
直径=周长÷圆周率 半径=周长÷(圆周率×2) 2、学习练习十四第2题。
(1)小红量得一个古代建筑中的大红圆柱的周长是3.768米,这个圆柱的直径是多少米?(得数保留一位小数)
已知:c=3.77m 求:d=?
解:设直径是x米。 3.77÷3.14 3.14x=3.77
≈1.2(米) x=3.77÷3.14
x≈1.2
(2)做一做。用一根1.2米长的铁条弯成一个圆形铁环,它的半径是多少?(得数保留两位小数)
已知:c=1.2米 R=c÷(2Π) 求:r=? 解:设半径为x米。
3.14×2x=1.2 1.2÷2÷3.14 6.28x=1.2 = 0.191 x=0.191 ≈0.19(米) x≈0.19 三、巩固练习。
1、饭店的大厅挂着一只大钟,这座钟的分针的尖端转动一周所走的路程是125.6厘米,它的分针长多少厘米?
2、求下面半圆的周长,选择正确的算式。 ⑴ 3.14×8 ⑵ 3.14×8×2 ⑶ 3.14×8÷2+8
3、一只挂钟分针长20cm,经过30分后,这根分针的尖端所走的路程是多少厘米?经过45分钟呢?
(1)想:钟面一圈是60分钟,走了30分,就是走了整个钟面的( ),也就是走了整个圆的( ) 。而钟面一圈的周长是多少?20×2×3.14=125.6(厘米)
(2)想:钟面一圈是60分钟,走了45分,就是走了整个钟面的( ) ,也就是走了整个圆的( ) 。则:钟面一圈的周长是多少? 20×2×3.14=125.6(厘米)
45分钟走了多少厘米? 125.6× =94.2(厘米)
1、 P66第10题思考题。下图的周长是多少厘米?你是怎样计算的? 四、作业。P65-66 第3、6、7、9题
32 第五课时
教学内容:圆的面积第67-68页圆面积公式的推导。例1及做一做的第1题。练习十六的第 1、2、5题。
教学目标:⒈使学生理解圆面积的含义,理解圆面积计算公式的推导过程,掌握圆面积的计算公式。
⒉培养学生动手操作、抽象概括的能力,运用所学知识解决简单实际问