数字信号处理(姚天任江太辉第三版)课后习题答案

2019-04-15 18:41

第二章

2.1 判断下列序列是否是周期序列。若是,请确定它的最小周期。 (1)x(n)=Acos((2)x(n)=e(j5??n?) 86n??) 83??n?) (3)x(n)=Asin(43解 (1)对照正弦型序列的一般公式x(n)=Acos(?n??),得出??是周期序列。最小周期等于N=

5?2?16?。因此是有理数,所以

8?516k?16(k取5)。 512??16?是无理数,所以不。因此

8? (2)对照复指数序列的一般公式x(n)=exp[??j?]n,得出??是周期序列。

(3)对照正弦型序列的一般公式x(n)=Acos(?n??),又x(n)=Asin(=Acos(N=

?3?3???n?)=Acos(?n?)

243433?2?83?1?是有理数,所以是周期序列。最小周期等于n?),得出??。因此

4?3468k?8(k取3) 3

2.2在图2.2中,x(n)和h(n)分别是线性非移变系统的输入和单位取样响应。计算并列的x(n)和h(n)的线性卷积以得到系统的输出y(n),并画出y(n)的图形。

h(n)=u(n)x(n)21-1(a)12 3n0 12 3…n-120 1x(n)h(n)21 -10 -124n-10 12 34n 1x(n)=u(n)(b)-1h(n)=anu(n)1…-10 12 34n…(c)-10 12 3n

解 利用线性卷积公式

y(n)=

??x(k)h(n?k)

k???按照折叠、移位、相乘、相加、的作图方法,计算y(n)的每一个取样值。 (a) y(0)=x(O)h(0)=1

y(l)=x(O)h(1)+x(1)h(O)=3

y(n)=x(O)h(n)+x(1)h(n-1)+x(2)h(n-2)=4,n≥2 (b) x(n)=2?(n)-?(n-1)

h(n)=-?(n)+2?(n-1)+ ?(n-2)

y(n)=-2?(n)+5?(n-1)= ?(n-3) (c) y(n)=

k???u(k)???an?ku(n?k)=

1?an?1=k????an?k1?au(n)

2.3 计算线性线性卷积 (1) y(n)=u(n)*u(n) (2) y(n)=?nu(n)*u(n)

解:(1) y(n)=

k???u(k)u(n?k)

???=

u(k)u(n?k)=(n+1),n≥0

k??0即y(n)=(n+1)u(n) (2) y(n)=???ku(k)u(n?k)

k???

=??k?0?k1??n?1,n≥0 u(k)u(n?k)=

1??即

1??n?1y(n)=u(n)

1??

2.4 图P2.4所示的是单位取样响应分别为h1(n)和h2(n)的两个线性非移变系统的级联,已知x(n)=u(n), h1(n)=?(n)-?(n-4), h2(n)=au(n),|a|<1,求系统的输出y(n).

n

解 ?(n)=x(n)*h1(n) =

k????u(k)[?(n-k)-?(n-k-4)]

? =u(n)-u(n-4)

y(n)=?(n)*h2(n) =

k?????a?a?ku(k)[u(n-k)-u(n-k-4)]

=

k,n≥3

k?n?32.5 已知一个线性非移变系统的单位取样响应为h(n)=a

?nu(-n),0

系统的单位阶跃响应。

2.6 试证明线性卷积满足交换率、结合率和加法分配率。

证明 (1)交换律

X(n) * y(n) =

k????x(k)y(n?k)

? `

令k=n-t,所以t=n-k,又-?

? x(n) * y(n) =

t?????x(n?t)y[n?(n?t)] ?x(n?t)y(t)=y(n) * x(n)

=

t???交换律得证. (2)结合律

[x(n) * y(n)] * z(n)

=[

k?????x(k)y(n?k)] * z(n)

[

? =

t?????k????x(k)y(t?k)]z(n-t)

??? =

k????????x(k) y(t-k)z(n-t)

t??? =x(k)

k????my(m)z(n-k-m)

=x(k)[y(n-k) * z(n-k)]

k??? =x(n) * [y(n) * z(n)] 结合律得证. (3)加法分配律

x(n) * [y(n) + z(n)]

=

k???????x(k)[y(n - k) +z(n - k)]

=

k????x(k)y(n-k)+

k????x(k)z(n - k)

=x(n) * y(n) + x(n) *z(n) 加法分配律得证.

2.7 判断下列系统是否为线性系统、非线性系统、稳定系统、因果系统。并加以证明

(1)y(n)= 2x(n)+3 (2)y(n)= x(n)sin[

2??n+] 36(3)y(n)=

k????x(k) (4)y(n)= ?x(k)

k?n0?n (5)y(n)= x(n)g(n)

解 (1)设y1(n)=2x1(n)+3,y2(n)=2x2(n)+3,由于 y(n)=2[x1(n)+x2(n)]+3 ≠y1(n)+ y2(n) =2[x1(n)+x2(n)]+6

故系统不是线性系统。

由于y(n-k)=2x(n-k)+3,T[x(n-k)]=2x(n-k)+3,因而

y(n-k) = T[x(n-k)]

故该系统是非移变系统。

设|x(n)|≤M,则有 |y(n)|=|2x(n)+3|≤|2M+3|<∞ 故该系统是稳定系统。 因y(n)只取决于现在和过去的输入x(n),不取决于未来的输入,故该系统是因果系统。 (2)设 y1(n)=ax1(n)sin[?2?n+] 63?2?y2(n)=bx2(n)sin[n+] 63 由于 y(n)=T[ax1(n)+ bx2(n)] =[ax1(n)+bx2(n)]sin[=ax1(n)sin[?2?n+] 63??2?2?n+]+bx2(n)sin[n+]6633 =ay1(n)+by2(n) 故该系统是线性系统。 由于 y(n-k)=x(n-k)sin[?2?(n-k)+] 63?2?T[x(n-k)]=x(n-k)sin[n+] 63因而有 T[x(n-k)]≠y(n-k) 帮该系统是移变系统。 设 |x(n)|≤M,则有 |y(n)|=|x(n)sin[?2?(n-k)+]| 63?2?=|x(n)|| sin[(n-k)+]| 63


数字信号处理(姚天任江太辉第三版)课后习题答案.doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:医疗技术临床应用管理制度

相关阅读
本类排行
× 注册会员免费下载(下载后可以自由复制和排版)

马上注册会员

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: