fn?p(xn?p)??1?xn?p?减
xn?p222?xn?p323?xn?p424???xn?pn32n?xn?pn?12(n?1)4???xn?pn?p2(n?p)?0上式相
:
234nxn?pxn?pxn?pxn?pxn?pxn?pxnxnxnxnxn?2?2?2???2?xn?p?2?2?2???2????234n234n(n?1)2(n?p)22nn?1n?pxn-xn?p?(xn?p-xn2222?xn?p-xn3233?xn?p-xn4244???xn?p-xnn2nn)?(xn?pn?12(n?1)???xn?pn?p2(n?p) )?1111???xn-xn?p?. nn?pnn法二:
25.(2013年高考上海卷(理))(3 分+6分+9分)给定常数c?0,定义函数f(x)?2|x?c?4|?|x?c|,
数列a1,a2,a3,?满足an?1?f(an),n?N*.
(1)若a1??c?2,求a2及a3;(2)求证:对任意n?N*,an?1?an?c,;
(3)是否存在a1,使得a1,a2,?an,?成等差数列?若存在,求出所有这样的a1,若不存在,说明理由.
【答案】:(1)因为c?0,a1??(c?2),故a2?f(a1)?2|a1?c?4|?|a1?c|?2,
a3?f(a1)?2|a2?c?4|?|a2?c|?c?10
(2)要证明原命题,只需证明f(x)?x?c对任意x?R都成立,
f(x)?x?c?2|x?c?4|?|x?c|?x?c
即只需证明2|x?c?4|?|x?c|+x?c
若x?c?0,显然有2|x?c?4|?|x?c|+x?c=0成立;
若x?c?0,则2|x?c?4|?|x?c|+x?c?x?c?4?x?c显然成立 综上,f(x)?x?c恒成立,即对任意的n?N,an?1?an?c
(3)由(2)知,若{an}为等差数列,则公差d?c?0,故n无限增大时,总有an?0 此时,an?1?f(an)?2(an?c?4)?(an?c)?an?c?8 即d?c?8
故a2?f(a1)?2|a1?c?4|?|a1?c|?a1?c?8, 即2|a1?c?4|?|a1?c|?a1?c?8,
当a1?c?0时,等式成立,且n?2时,an?0,此时{an}为等差数列,满足题意; 若a1?c?0,则|a1?c?4|?4?a1??c?8,
此时,a2?0,a3?c?8,?,an?(n?2)(c?8)也满足题意; 综上,满足题意的a1的取值范围是[?c,??)?{?c?8}.
26.(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD版含附加题))本小题满分
*10分.
k个?????????k-1k-1k,?,(-1)k1,-2,-2,3,3,3,-4,-4,-4,-4,?,(-1)?an?:设数列,即当
(k?1)k(kk?1)k?1k?N??时,an??n?(-1)k,记Sn?a1?a2??an?n?N??,对于l?N?,定义?22?集合Pl?nSn是an的整数倍,n?N,且1?n?l
??(1)求集合P11中元素的个数; (2)求集合P2000中元素的个数.
【答案】本题主要考察集合.数列的概念与运算.计数原理等基础知识,考察探究能力及运用数学归纳法分析
解决问题能力及推理论证能力. (1)
解
:
由
数
列
?an?的定义
得:a1?1,a2??2,a3??2,a4?3,a5?3,a6?3,a7??4,a8??4,a9??4,a10??4,a11?5 ∴S1?1,S2??1,S3??3,S4?0,S5?3,S6?6,S7?2,S8??2,S9??6,S10??10,
S11??5
∴S1?1?a1,S4?0?a4,S5?1?a5,S6?2?a6,S11??1?a11 ∴集合P11中元素的个数为5
(2)证明:用数学归纳法先证Si(2i?1)??i(2i?1) 事实上,
① 当i?1时,Si(2i?1)?S3??1?(2?1)??3 故原式成立
② 假设当i?m时,等式成立,即Sm(2m?1)??m?(2m?1) 故原式成立 则:i?m?1,时,
S(m?1)[2(m?1)?1}?S(m?1)(2m?3}?Sm(2m?1)?(2m?1)2?(2m?2)2??m(2m?1)?(2m?1)2?(2m?2)2 ??(2m2?5m?3)??(m?1)(2m?3)
综合①②得:Si(2i?1)??i(2i?1) 于是
S(i?1)[2i?1}?Si(2i?1}?(2i?1)2??i(2i?1)?(2i?1)2?(2i?1)(i?1)
由上可知:Si(2i?1}是(2i?1)的倍数
而a(i?1)(2i?1}?j?2i?1(j?1,2,?,2i?1),所以Si(2i?1)?j?Si(2i?1)?j(2i?1)是
a(i?1)(2i?1}?j(j?1,2,?,2i?1)的倍数
又S(i?1)[2i?1}?(i?1)(2i?1)不是2i?2的倍数, 而a(i?1)(2i?1}?j??(2i?2)(j?1,2,?,2i?2)
所以S(i?1)(2i?1)?j?S(i?1)(2i?1)?j(2i?2)?(2i?1)(i?1)?j(2i?2)不是a(i?1)(2i?1}?j(j?1,2,?,2i?2)的
倍数
(2i-1)?i 故当l?i(2i?1)时,集合Pl中元素的个数为1?3???于是当l?i(2i?1)?j(时,集合Pl中元素的个数为i2?j 1?j?2i?1)2(2?31?1)?47 又2000?31?故集合P2000中元素的个数为31?47?1008 [来源:www.12999.Com]
27.(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD版))在公差为d的等差数列{an}中,
2已知a1?10,且a1,2a2?2,5a3成等比数列.
(1)求d,an; (2)若d?0,求|a1|?|a2|?|a3|???|an|.
【答案】解:(Ⅰ)由已知得到:
(2a2?2)2?5a1a3?4(a1?d?1)2?50(a1?2d)?(11?d)2?25(5?d)
?d?4?d??1; ?121?22d?d?125?25d?d?3d?4?0??或??an?4n?6?an?11?n22(Ⅱ)由(1)知,当d?0时,an?11?n,
①当1?n?11时,
n(10?11?n)n(21?n) an?0?|a1|?|a2|?|a3|?????|an|?a1?a2?a3?????an??22②当12?n时,
an?0?|a1|?|a2|?|a3|?????|an|?a1?a2?a3?????a11?(a12?a13?????an)11(21?11)n(21?n)n2?21n?220?2(a1?a2?a3?????a11)?(a1?a2?a3?????an)?2???222
?n(21?n),(1?n?11)?2?所以,综上所述:|a1|?|a2|?|a3|??; ???|an|??2?n?21n?220,(n?12)??228.(2013年高考湖北卷(理))已知等比数列?an?满足:
a2?a3?10,a1a2a3?125.
(I)求数列?an?的通项公式; (II)是否存在正整数m,使得
111?????1?若存在,求m的最小值;若不存在,说明理由. a1a2am【答案】解:(I)由已知条件得:a2?5,又a2q?1?10,?q??1或3,
n?2所以数列?an?的通项或an?5?3(II)若q??1,
1111??????或0,不存在这样的正整数m; a1a2am5m1119??1??9若q?3,??????1?????,不存在这样的正整数m.
a1a2am10???3???1029.(2013年普通高等学校招生统一考试山东数学(理)试题(含答案))设等差数列
?an?的前n项和为Sn,
且S4?4S2,a2n?2an?1. (Ⅰ)求数列?an?的通项公式;
(Ⅱ)设数列?bn?前n项和为Tn,且 Tn?项和Rn.
[来源:12999.Com]
【答案】解:(Ⅰ)设等差数列
an?1??(?为常数).令cn?b2n(n?N*).求数列?cn?的前nn2?an?的首项为a1,公差为d,
由
S4?4S2,a2n?2an?1得
4a1?6d?8a1?4d???a1?(2n?1)?2a1?2(n?1)d?1,
解得,
a1?1,d?2
*a?2n?1(n?N) n因此
(Ⅱ)由题意知:
Tn???n2n?1
n2n?1?n?12n?2
所以n?2时,
bn?Tn?Tn?1??故,
cn?b2n?2n?21n?1?(n?1)()*(n?N) 22n?14
11111Rn?0?()0?1?()1?2?()2?3?()3?????(n?1)?()n?144444所以, 111111Rn?0?()1?1?()2?2?()3?????(n?2)?()n?1?(n?1)?()n44444 则4