最新导数理科压轴题集锦(题型丰富_都是高三的最新的一些考题)(2)

2019-06-11 17:56

故只能a?0????5分

故2ax?(1?4a)x?(4a?2)?0对x?3恒成立 令g(x)?2ax?(1?4a)x?(4a?2),其对称轴为x?1?22221?1 4a从而要使g(x)?0对x?3恒成立,只要g(3)?0即可????6分

?g(3)??4a2?6a?1?0 解得:3?133?13?a? 44?a?0,故0?a?3?13 4综上所述,实数a的取值范围为?0,?3?13??????7分 4??(1?x)3b1b+可化为,lnx?(1?x)2?(1?x)?.(3)若a??时,方程f(1?x)? 3x2x问题转化为b?xlnx?x(1?x)?x(1?x)?xlnx?x?x在?0,???上有解,

223即求函数g(x)?xlnx?x?x的值域.????????????8分 以下给出两种求函数g?x?值域的方法:

解法一:g(x)?xlnx?x?x?x(lnx?x?x),令h(x)?lnx?x?x(x?0) 则h'(x)?2322231(2x?1)(1?x)????9分 ?1?2x?xx所以当0?x?1时,h'(x)?0,从而h(x)在(0,1)上为增函数 当x?1时,h'(x)?0,从而h(x)上为减函数 因此h(x)?h(1)?0????10分 而x?0,故b?x?h(x)?0????11分 因此当x?1时,b取得最大值0????12分

解法二:因为g(x)?x(lnx?x?x),所以g'(x)?lnx?1?2x?3x

2216x2?2x?1设p(x)?lnx?1?2x?3x,则p'(x)??2?6x??????9分

xx2当0?x??1?7?1?7时,p'(x)?0,所以p(x)在?0,上单调递增 ???66??当x??1?7?1?7时,p'(x)?0,所以p(x)在?上单调递减 ,????6?6???1?7?23?1?,又p?2???2?1?2?4?0??6?ee?e???3??e4?0???

因为p(1)?0,故必有p?10分

?11?7?因此必存在实数x0??2,使得g'(x0)?0 ??e?6??当0?x?x0时,g'(x)?0,所以g(x)在(0,x0)上单调递减; 当x0?x?1时,g'(x)?0,所以g(x)在(x0,1)上单调递增

当x?1时,g'(x)?0,所以g(x)在(1,??)上单调递减????11分 又因为g(x)?xlnx?x?x?x(lnx?x?x)?x(lnx?)

232141?0,则g(x)?0,又g(1)?0 4因此当x?1时,b取得最大值0????12分

1?a6.已知函数f(x)?lnx?ax??1(a?R).

x?1(Ⅰ)当a?时,讨论f(x)的单调性;

2当x?0时,lnx?(Ⅱ)当a?0时,对于任意的n?N?,且n?2,证明:不等式

111132n?1 ???????f(2)f(3)f(4)f(n)42n(n?1)11?a?ax2?x?a?121.解析(I)原函数的定义域为(0,??),因为f'(x)??a?2? 2xxx当a?0时,f'(x)?x?1x?1,令f'(x)??0得x???所以此时函数f(x)在(1,??)上是增22xx函数,在(0,1)上是减函数;

?ax2?x?a?112??得?ax?x?1?a??当a?0时,令f'(x)?,解得x?1或x??1x2a(舍去),此时函数f(x)在(1,??)上增函数,在(0,1)上是减函数;

?ax2?x?a?1112当0?a?时,令f'(x)?,解得??得?ax?x?1?a??1?x??1 2x2211?1)上是增函数,在(0,1)和(?1,??)上是减函数 ???6分 aa1(II)由(I)知:a?0时,f(x)?Lnx??1在(1,??)上是增函数,

x此时函数f(x)在(1,?x?1时f(x)?f(x)?0

设g(x)?f(x)?(x2?1)?Lnx?1?x2(x?1) x11?2x3?x?1?(x?1)(2x3?2x?1)则g'(x)??2?2x? ?22xxxx单调递减 ,x(?2x2?2x?1?0恒成立 ?x?1时,g'(x)?0g?x?1时,g(x)?g(1)?0,即f(x)?x2?1

又f(x)?0,?111111?2??(?) f(x)x?1(x?1)(x?1)2x?1x?1?111111111111??????(1?????????) f(2)f(3)f(4)f(n)232435n?1n?1111132n?1 ?(1???)??22nn?142n(n?1)?不等式得证 ?????????????12分

7.已知函数f(x)?ax?1?lnx(a?R).

(Ⅰ)讨论函数f(x)在定义域内的极值点的个数;

(Ⅱ)若函数f(x)在x?1处取得极值,对?x?(0,??),f(x)?bx?2恒成立, 求实数b的取值范围;

(Ⅲ)当0?x?y?e且x?e时,试比较

21.解:(Ⅰ)f?(x)?a?1ax?1,当a?0时,f?(x)?0在(0,??)上恒成立,函数f(x) ?xx在(0,??)单调递减,∴f(x)在(0,??)上没有极值点;

2y1?lny的大小. 与x1?lnx当a?0时,f?(x)?0得0?x?11,f?(x)?0得x?,

aa∴f(x)在(0,)上递减,在(,??)上递增,即f(x)在x?∴当a?0时f(x)在(0,??)上没有极值点,

1a1a1处有极小值. a当a?0时,f(x)在(0,??)上有一个极值点. ································································· 3分 (Ⅱ)∵函数f(x)在x?1处取得极值,∴a?1, ∴f(x)?bx?2?1?令g(x)?1?1lnx················································································· 5分 ??b, ·

xx1lnx,可得g(x)在0,e2上递减,在e2,??上递增, ?xx????∴g(x)min?g(e2)?1?(Ⅲ)证明:ex?y1e2,即b?1?1. ······································································ 7分 2eln(x?1)exey???, ············································· 8分 ln(y?1)ln(x?1)ln(y?1)ex令g(x)?,则只要证明g(x)在(e?1,??)上单调递增,

ln(x?1)1??ex?ln(x?1)?x?1???,

又∵g?(x)?ln2(x?1)显然函数h(x)?ln(x?1)?∴h(x)?1?1在(e?1,??)上单调递增. ···································· 10分 x?11?0,即g?(x)?0, eexey?∴g(x)在(e?1,??)上单调递增,即,

ln(x?1)ln(y?1)∴当x?y?e?1时,有ex?y?ln(x?1). ································································ 12分

ln(y?1)8. 设函数f(x)?lnx?ax,(a?R)

(1)判断函数f(x)的单调性;

(2)当lnx?ax(0,??)上恒成立时,求a的取值范围; (3)证明:(1?)?e(n?N?).

1nn

8.设函数f(x)?lnx? (1)当a?b?12ax?bx. 21时,求函数f(x)的最大值; 2


最新导数理科压轴题集锦(题型丰富_都是高三的最新的一些考题)(2).doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:新目标九年级英语被动语态专项复习练习题及答案

相关阅读
本类排行
× 注册会员免费下载(下载后可以自由复制和排版)

马上注册会员

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: