S2k?1??4(k?13)2?4?132?50, ?当k?13时,S2k?1取得最大值.
S2k?1的最大值为626.
5a54?a245?2?1411(Ⅰ)设第4列公差为d,则d?516116?168?1. 316a44a42?14?1故a44?a54?d??,于是q2?12.
由于aij?0,所以q?0,故q?.
18?116(i?2)?116i.
(Ⅱ)在第4列中,ai4?a24?(i?2)d?由于第i行成等比数列,且公比q??1??i???16?2?n12,
?1??i???.
?2?n所以, aij?ai4?qj?41j?4j(Ⅲ)由(Ⅱ)可得ann?1??1??n??.即bn=n??.
?2??2?所以Sn?b1?b2?b3???bn?a11?a22?a33???ann. ?1??1??1?即Sn?1??2????3??????(n?1)???2?2??2??2?1234123n?1?1??n???,
?2?nn?1n?1??1??1??1??1?故Sn?1????2????3??????(n?1)????n???2?2??2??2??2??2??1??1??1??1?两式相减,得Sn?????????????n???22?2??2??2??2?1123nn?1.
n1??1???1????n?1nn?12?2??111???????????n????1????n??,
12???2??2?1?2所以Sn?2?
12n?1?n2n.
16
全章检测题答案 一 选择题:
1 A 2 A 3 C 4 A 5 C 二 填空题:
6 84 7 512 8 26 9 ?1?p?12?1 10
53
77?a1?a7?2a4?a1?a4?a7?3a4?a9?a11?2a108 提示:?2?a1?a4?a7??3?a9?a11??6?a4?a10??6?a1?a9?
?S13?26三 解答题:
11解 (Ⅰ)设等差数列?an?的公差为d,由题意知
???nan?n?1?1?2d?n2, ??a2?a1?a4?a3?????an?an?1?n.?a?n?1d?∴??1n,?2 ∴a1?1,d?2.
?d??2n?n.∴an?2n?1.
2n证明(Ⅱ)由S?11???2??1??3??1?2?????????2n?1???1???2?, ①
?2??则12nn?12S?1????1??1?????????2n?3???1?????2n?1???1???.?2??2??2??2? ①?②得,
12S?1?1???1???2???????1??n?????2n?1?1n?1????2??2??2??2??????2? ?2?n?2?1??1?1? ?14?1?????2?????n?12?1?1??2n?1???1???2? ?2n?1?3?1n?12?????3?2??2n?1???1????2??2(n是正偶数),
∴S??1?2??3. ??
17
②
12 证明:(Ⅰ)依题意cn=an+1— an,
∴ cn=[((n?1)2?25135213(n?1)]?[n?n]?5n?4. 22212n(Ⅱ)(1)由cn— an=2n得an+1— an— an=2n,即an+1=2an+2n.
∴
a12an?12n?1?an2n?,即
an?121n?1?an2n?1212.
为公差的等差数列.
∵a1=1,?12,∴{an2}是以
2为首项、
(2) 由(1)得an=?2n=n·2,
2nn-1
∴ Sn = a1+a2+…+an=1·2+2·2+…+n·2, ① ∴ 2Sn=1·21+2·22+…+n·2n. ①—②得:— Sn=1+2+2+…+2
2
n-1
01n-1
② n·2=
n —
1?2n1?2—
n·2,
n
∴ Sn= n·2n— 2n+1=(n— 1)·2n +1.
13 (Ⅰ)证明:在已知式中,当n=1时,a13?a12 ∵a1>0 ∴a1=1
33332 当n≥2时,a1?a2?a3???an?Sn ①
33332 a1?a2?a3???an?1?Sn?1 ②
3 ①-②得,an?an(2a1?2a2???2an?1?an)
∵an>0 ∴an=2a1+2a2+…+2an-1+an, 即an=2Sn-an ∵a1=1适合上式 ∴an=2Sn-an(n∈N+
(Ⅱ)解:由(1)知an=2Sn-an(n∈N+) ③
2当n≥2时, an?1=2Sn-1-an-1 ④
2222 ③-④得an-an?1=2(Sn-Sn-1)-an+an-1=2an-an+ an-1= an+ an-1 ∵an+an-1>0 ∴an-an-1=1
∴数列{an}是等差数列,首项为1,公差为1,可得an=n
22 18
第三章不等式
3.1 不等关系与不等式 一. 选择题
1.D 2.C提示:分子有理化 3.C 提示:
1a?1b?b?aab ①②④正确
?1b 4. C 对于A,B,倒数法则:a?b,ab?0?二.填空题
5. a ,ab 作差可以判断 6. (46, 68), (5, 27) 7. 第一或第三象限
??是第三象限,则2k1??????2k1??321a,要求a,b同号,
?,k1?z
?是第二象限角,则有2k2???2???2k2???,k2?z
可得2(k1?k2)??????2(k1?k2)???,(k1?k2)???k1,k2?z,故k1?k2?z,从而
???2??k1?k2????2
???2为第一或第三象限角
三.解答题
8.(x?3)2?(x?2)(x?4)?1,?(x?3)2?(x?2)(x?4) 即log12(x?3)?log212(x?2)(x?4)
9. ? m+n=1且
?ma?nb?2?(ma?nb)?ma?nb?(ma?nb?2mn222ab)
=ma(1-m)+nb(1-n)-2mnab =mn(a-2ab?b)=mn(a? ?3.2一元二次不等式及其解法(1)
一.选择题
1.C 2. B 3. B 解得?1?x?0通过特殊值法或作差即可得到结论 4.C(1)当a=2时-4?0恒成立;
2(2)当a<2时 ??4(a?2)?16?0,解得?2?a?2
b)?0
2am?nb ?ma?nb
交集得?2?a?2(1)(2)并集得?2?a?2 二.填空题
5.不等式ax?bx?2?0的解集是(-1,2)说明方程ax?bx?2?0的两个根为-1,2
22 19
x1?x2?1??ba,x1x2?32a??2,解得a??1,b?1,则a+b=0
6. ?x???14?x?0或??x?1? 4??4x2?3x?013交集得或??x?0?x?1 ?44?log0.5(4x?3x)?07. ??2,???; 设x?1?t(t?0),则x?t2?1,y?2t2?2?t,可得当t=0时ymin??2 三.解答题
8.?x2?8x?26?0恒成立,要使得mx2?2(m?1)x?9m?4?0恒成立,
即使(1)m=0时,显然原不等式不恒成立,
?m?0m?0(2)时,m满足? 2??4(m?1)?4m(9m?4)?0?改为?(,??)
41
9. 记 F(x)=f(x)-k=(x-k)2+2-k-k2,则F(x)≥0对x≥-1都成立,
???x?0,?由题意得Δx<0或?F(?1)?0,求得-3≤k<-1. 改为:求得-3≤k<1.
??2k????1,2?3.2一元二次不等式及其解法(2) 一.选择题
1.B 2.D 3.A 4.C
2.提示:讨论x的正负或利用数形结合 4. loga(x?2x?3)?log(1)当a>1时x?2x?3?221aa,
1a不恒成立
1a2(2)当0?a?1时,要使x?2x?3?在x?R上恒成立,则有??4?12?4a?0
解得 a?二.填空题
12,交集得
12?a?1
20