随机信号分析(第3版) 习题答案
(1)Y(t)的均值;(3)Y(t)的广义平稳性。
(2)Y(t)的相关函数;
3.5解:(1)E[Y(t)]=E[X2(t)]=E[100sin2(ω0t+θ)]=50E[1 cos(2ω0t+2θ)]=50
(2)RY(t+τ,t)=E[Y(t+τ)Y(t)]=E[X2(t+τ)X2(t)]
=E[100sin2(ω0t+θ)×100sin2(ω0t+ω0τ+θ)]=2500E[1 cos(2ω0τ) cos(4ω0t+2ω0τ+4θ)]=2500E[1 cos(2ω0τ)]
∴RZ(τ)仅与τ有关,且均值为常数,故Y(t)是平稳过程。
3.6给定随机过程X(t)=Acos(ω0t)+Bsin(ω0t),其中ω0是常数,A和B是两个任意的不相关随机变量,它们均值为零,方差同为σ2。证明X(t)是广义平稳而不是严格平稳的。
3.6证明:QmX(t)=E[X(t)]=E[Acos(ω0t)+Bsin(ω0t)]=0
RX(t+τ,t)=E[X(t+τ)X(t)]
=E{[Acos(ω0t)+Bsin(ω0t)]×[Acos(ω0t+ω0τ)+Bsin(ω0t+ω0τ)]}=E[A2cos(ω0t)×cos(ω0t+ω0τ)+B2sin(ω0t)×sin(ω0t+ω0τ)]11
=σ2E[cos(2ω0t+ω0τ)+cos(ω0τ)]+σ2E[cos(ω0τ) cos(2ω0t+ω0τ)]22=σ2cos(ω0τ)
由于均值是常数,且相关函数只与τ有关,故X(t)是广义平稳过程。取t1=取t2=
2π
时,X(t)=Aω0
2ππ+时,X(t)=B,ω02ω0
显然fX(x,t1)=fA(x)不一定等于fX(x,t2)=fB(x)∴X(t)不是严格平稳的。
3.7Y(t)是广义周期平稳的实随机信号,平稳周期为100,有均值m(10)=20和相关函数R(5,1)=10,试求:
(1)E[5Y(110)],E[10Y(310)+50];