x1 +3x2 +x3 2x1 +3x2 -x3 x1 -x2 +x3
+x4 +x5 +x6
=15 =18 =3
基变量x1、x2、x6,非基变量x3、x4、x5
x1 +3x2 2x1 +3x2 x1 -x2 +x6
=15 =18 =3
基解为 (x1,x2,x3,x4,
x5,x6)=(3,4,0,0,0,4)
是基可行解,表示可行域的一个顶点。目标函数值为:z=18
x1 +3x2 +x3 2x1 +3x2 -x3 x1 -x2 +x3
+x4 +x5 +x6
=15 =18 =3
基变量x1、x2、x6,非基变量x3、x4、x5
x1 +3x2 2x1 +3x2 x1 -x2 +x6
=15 =18 =3
基解为 (x1,x2,x3,x4,
x5,x6)=(3,4,0,0,0,4)
是基可行解,表示可行域的一个顶点。目标函数值为:z=18