x1 +3x2 +x3 2x1 +3x2 -x3 x1 -x2 +x3
+x4 +x5 +x6
=15 =18 =3
基变量x2、x3、x4,非基变量x1、x5、x6
3x2 3x2 -x2
+x3 -x3 +x3
+x4 =15 =18 =3
基解为 (x1,x2,x3,x4,x5,x6)=(0,21/2,27/2,-30,0,0)
是基解,但不是基可行解。
x1 +3x2 +x3 2x1 +3x2 -x3 x1 -x2 +x3
+x4 +x5 +x6
=15 =18 =3
基变量x2、x3、x4,非基变量x1、x5、x6
3x2 3x2 -x2
+x3 -x3 +x3
+x4 =15 =18 =3
基解为 (x1,x2,x3,x4,x5,x6)=(0,21/2,27/2,-30,0,0)
是基解,但不是基可行解。